Log in

Nanoindentation Elastoplastic and Creep Behaviors of Sintered Nano-Silver Doped with Nickel-Modified Multiwall Carbon Nanotube Filler

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the elastoplastic and creep constitutive behaviors of sintered silver with varying amounts of nickel-modified multiwall carbon nanotubes are studied through a systematic investigation of the nanoindentation test. Elastoplastic stress–strain curves for the sintered silver with different additive content are obtained based on reverse analysis. The addition of nickel-modified multiwall carbon nanotubes reduced the yielding stress from 110.68 MPa to 61.61 MPa and generally increased the strain-hardening exponent from 0.26 to 0.41. The initial and steady-state creep stress exponent remained almost unchanged. However, the creep coefficient increased remarkably. Otherwise, the yielding stress was confirmed to agree well with the Hall–Petch relation, and the hardening exponent was found to follow Morrison’s law. The creep exponents and creep coefficients were also obtained and shown to be highly related to the particle size and positively correlated with porosity. The creep regime at room temperature was confirmed to obey Sherby’s model. This investigation shows the effect of additive content on sintered silver. The study given in this paper could deepen the understanding of the strengthening effect of nickel-modified multiwall carbon nanotubes on the mechanical performance of sintered silver at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. T.F. Chen and K.S. Siow, Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J. Alloys Compd. 866, 158783 (2021).

    Article  CAS  Google Scholar 

  2. J. Dai, J. Li, P. Agyakwa, M. Corfield, and C.M. Johnson, Comparative thermal and structural characterization of sintered nano-silver and high-lead solder die attachments during power cycling. IEEE Trans. Device Mater. Reliab. 18(2), 256 (2018).

    Article  CAS  Google Scholar 

  3. H. Zhang, Z. Zhao, G. Zou, W. Wang, L. Liu, G. Zhang, and Y. Zhou, Failure analysis and reliability evaluation of silver-sintered die attachment for high-temperature applications. Microelectron. Reliab. 94, 46 (2019).

    Article  CAS  Google Scholar 

  4. F. Khodabakhshi, M. Zareghomsheh, and G. Khatibi, Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes. Mater. Sci. Eng. A 797, 140203 (2020).

    Article  CAS  Google Scholar 

  5. Y.D. Han, Y. Gao, S.T. Zhang, H.Y. **g, J. Wei, L. Zhao, and L.Y. Xu, Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation. Mater. Sci. Eng. A 761, 138051 (2019).

    Article  CAS  Google Scholar 

  6. Y. Huang, Z. **u, G. Wu, Y. Tian, and P. He, Sn-3.0 Ag-0.5 Cu nanocomposite solders reinforced by graphene nanosheets. J. Mater. Sci. Mater. Electron. 27(7), 6809 (2016).

    Article  CAS  Google Scholar 

  7. F. Khodabakhshi, R. Sayyadi, and N.S. Javid, Lead free Sn-Ag-Cu solders reinforced by Ni-coated graphene nanosheets prepared by mechanical alloying: microstructural evolution and mechanical durability. Mater. Sci. Eng. A 702, 371 (2017).

    Article  CAS  Google Scholar 

  8. A. Sharma, H.R. Sohn, and J.P. Jung, Effect of graphene nanoplatelets on wetting, microstructure, and tensile characteristics of Sn-3.0 Ag-0.5 Cu (SAC) alloy. Metall. Mater. Trans. A 47, 494 (2016).

    Article  CAS  Google Scholar 

  9. S. Xu, Y.C. Chan, K. Zhang, and K.C. Yung, Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3.5Ag0.5Cu solder joint under current stressing. J. Alloys Compd. 595, 92 (2014).

    Article  CAS  Google Scholar 

  10. Z. Zhu, Y.C. Chan, Z. Chen, C.L. Gan, and F. Wu, Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A 727, 160 (2018).

    Article  CAS  Google Scholar 

  11. S.M.L. Nai, J. Wei, and M. Gupta, Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J. Electron. Mater. 37(4), 515 (2008).

    Article  CAS  Google Scholar 

  12. Y.D. Han, H.Y. **g, S.M.L. Nai, L.Y. Xu, C.M. Tan, and J. Wei, Interfacial reaction and shear strength of Ni-coated carbon nanotubes reinforced Sn-Ag-Cu solder joints during thermal cycling. Intermetallics 31, 72 (2012).

    Article  Google Scholar 

  13. H. Sun, Y.C. Chan, and F. Wu, Effect of CNTs and Ni coated CNTs on the mechanical performance of Sn57.6Bi0.4Ag BGA solder joints. Mater. Sci. Eng. A 656, 249 (2016).

    Article  CAS  Google Scholar 

  14. Z. Yang, W. Zhou, and P. Wu, Effects of Ni-coated carbon nanotubes addition on the electromigration of Sn-Ag-Cu solder joints. J. Alloys Compd. 581, 202 (2013).

    Article  CAS  Google Scholar 

  15. K.K. Xu, L. Zhang, and N. Jiang, Effect of CNTs on the intermetallic compound growth between Sn solder and Cu substrate during aging and reflowing. J. Mater. Sci. Mater. Electron. 32(3), 2655 (2021).

    Article  CAS  Google Scholar 

  16. H. Wang, X. Hu, and X. Jiang, Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0 Ag-0.5 Cu composite solder joints. Mater Charact 163, 110287 (2020).

    Article  CAS  Google Scholar 

  17. M.A. Hanim, A.B. Dasan, T.T. Dele-Afolabi, T. Ariga, and K. Vidyatharran, Influence of porous Cu interlayer on the intermetallic compound layer and shear strength of MWCNT-reinforced SAC 305 composite solder joints. J. Mater. Sci. Mater. Electron. 32(4), 4515 (2021).

    Article  CAS  Google Scholar 

  18. T.T. Dele-Afolabi, M.A. Hanim, O.J. Ojo-Kupoluyi, and R. Calin, Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn-5Sb solder composites on Cu substrate. J. Alloys Compd. 808, 151714 (2019).

    Article  CAS  Google Scholar 

  19. N.S. Javid, R. Sayyadi, and F. Khodabakhshi, Lead-free Sn-based/MW-CNTs nanocomposite soldering: effects of reinforcing content, Ni-coating modification, and isothermal ageing treatment. J. Mater. Sci. Mater. Electron. 30(5), 4737 (2019).

    Article  CAS  Google Scholar 

  20. T.T. Dele-Afolabi, M.A. Hanim, K. Vidyatharran, K.A. Matori, O.S. Azlina, and R. Calin, Interfacial microstructure evolution and shear strength of MWCNTs-reinforced Sn-1.0 Ag-0.5 Cu (SAC105) composite solder interconnects on plain Cu and ENIAg surface finish. J. Mater. Sci. Mater. Electron. 33, 8233–8246 (2022).

    Article  CAS  Google Scholar 

  21. H. Wang, X. Hu, and X. Jiang, Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag-0.5 Cu composite solder joints. Mater Charact 163, 110287 (2020).

    Article  CAS  Google Scholar 

  22. X. Long, Z. Li, X. Lu, H. Guo, C. Chang, Q. Zhang, and J. Liu, Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles. Mater. Sci. Eng. A 744, 406 (2019).

    Article  CAS  Google Scholar 

  23. B. Hu, F. Yang, Y. Peng, C. Hang, H. Chen, C. Lee, and M. Li, Effect of SiC reinforcement on the reliability of Ag nanoparticle paste for high-temperature applications. J. Mater. Sci. Mater. Electron. 30(3), 2413 (2019).

    Article  CAS  Google Scholar 

  24. J. Szałapak, K. Kiełbasiński, Ł Dybowska-Sarapuk, J. Krzeminski, M. Teodorczyk, T. Kowaluk, and M. Jakubowska, Influence of carbon nanoparticles additives on nanosilver joints in LTJT technology. ASME. J. Electron. Packag. 143(3), 034501 (2021).

    Article  Google Scholar 

  25. Y. Dai, Z. Zan, S. Zhao, Y. Li, and F. Qin, Shearing fracture toughness enhancement for sintered silver with nickel coated multiwall carbon nanotubes additive. Eng. Fract. Mech. 260, 108181 (2022).

    Article  Google Scholar 

  26. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites: a review. Int. Mater. Rev. 55(1), 41 (2010).

    Article  CAS  Google Scholar 

  27. A. Patil, M.S.K.K.Y. Nartu, F. Ozdemir, R. Banerjee, R.K. Gupta, and T. Borkar, Strengthening effects of multi-walled carbon nanotubes reinforced nickel matrix nanocomposites. J. Alloys Compd. 876, 159981 (2021).

    Article  CAS  Google Scholar 

  28. S. Kim, S. Park, D. Kim, and C. **, Thermal diffusivity of Ag/CNT-Added Ag nanocomposites prepared by spark plasma sintering. Int. Cast Met. J. Precis. Eng. Manuf. 21(7), 1357 (2020).

    Article  Google Scholar 

  29. A. Oluwalowo, N. Nguyen, S. Zhang, J.G. Park, and R. Liang, Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon 146, 224 (2019).

    Article  CAS  Google Scholar 

  30. F. Wang, Z. Chen, H. He, and N. Nie, Study on the effect of CNT on the improved mechanical performance of flexible Ag NPs/CNT based electronics. AIP Adv. 9(4), 045318 (2019).

    Article  Google Scholar 

  31. V. Gopee, O. Thomas, C. Hunt, V. Stolojan, J. Allam, and S.R.P. Silva, Carbon nanotube interconnects realized through functionalization and sintered silver attachment. ACS Appl. Mater. Interfaces 8(8), 5563 (2016).

    Article  CAS  Google Scholar 

  32. D. Jia, J. Ma, X. Gan, J. Tao, M. **e, J. Yi, and Y. Liu, A Comparison study of Ag composites prepared by spark plasma sintering and hot pressing with silver-coated CNTs as the reinforcements. Materials 12(12), 1949 (2019).

    Article  CAS  Google Scholar 

  33. X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, and G.Q. Lu, Creep properties of low-temperature sintered nano-silver lap shear joints. Mater. Sci. Eng. A 579, 108 (2013).

    Article  CAS  Google Scholar 

  34. G. Chen, X.H. Sun, P. Nie, Y.H. Mei, G.Q. Lu, and X. Chen, High-temperature creep behavior of low-temperature-sintered nano-silver paste films. J. Electron. Mater. 41(4), 782 (2012).

    Article  CAS  Google Scholar 

  35. D. Leslie, A. Dasgupta, and C. Morillo, Viscoplastic properties of pressure-less sintered silver materials using indentation. Microelectron. Reliab. 74, 121 (2017).

    Article  CAS  Google Scholar 

  36. X. Long, B. Hu, Y. Feng, C. Chang, and M. Li, Correlation of microstructure and constitutive behaviour of sintered silver particles via nanoindentation. Int. J. Mech. Sci. 161, 105020 (2019).

    Article  Google Scholar 

  37. X. Long, Q. Jia, Z. Shen, M. Liu, and C. Guan, Strain rate shift for constitutive behaviour of sintered silver nanoparticles under nanoindentation. Mech. Mater. 158, 103881 (2021).

    Article  Google Scholar 

  38. H. Zhang, Y. Liu, L. Wang, F. Sun, X. Fan, and G. Zhang, Indentation hardness, plasticity and initial creep properties of nanosilver sintered joint. Results Phys. 12, 712 (2019).

    Article  Google Scholar 

  39. E. Kolbinger, S. Kuttler, S. Wagner, and M. Schneider-Ramelow, Investigation of the mechanical properties of corroded sintered silver layers by using Nanoindentation. Microelectron. Reliab. 114, 113889 (2020).

    Article  CAS  Google Scholar 

  40. G. He, W. Hongcheng, and Y. Yao, Creep of sintered porous micron-silver: nanoindentation experiment and theoretical analysis. J. Mater. Sci. 56(32), 18281 (2021).

    Article  CAS  Google Scholar 

  41. F. Qin, S. Zhao, Y. Dai, L. Liu, T. An, P. Chen, and Y. Gong, Indentation tests for sintered silver in die-attach interconnection after thermal cycling. J. Electron. Packag. 144, 3 (2022).

    Article  Google Scholar 

  42. D. Tabor, The hardness of metals. Published in the Oxford Classics series (New York: Oxford Univ. Press, 2000).

    Book  Google Scholar 

  43. K.L. Johnson, Contact mechanics (London: Cambridge Univ. Press, 1985).

    Book  Google Scholar 

  44. J.M. Antunes, J.V. Fernandes, L.F. Menezes, and B.M. Chaparro, A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Mater. 55(1), 69 (2007).

    Article  CAS  Google Scholar 

  45. U. Landman, W.D. Luedtke, N.A. Burnham, and R.J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248(4954), 454 (1990).

    Article  CAS  Google Scholar 

  46. M.E. Kassner, P. Kumar, and W. Blum, Harper–Dorn creep. Int. J. Plast. 23(6), 980 (2007).

    Article  CAS  Google Scholar 

  47. A.C. Fischer-Cripps, A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng. A 385(1–2), 74 (2004).

    Article  Google Scholar 

  48. L. Shen, P. Septiwerdani, and Z. Chen, Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation. Mater. Sci. Eng. A 558, 253 (2012).

    Article  CAS  Google Scholar 

  49. Y. Li, X. Fang, S. Lu, Q. Yu, G. Hou, and X. Feng, Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation. Mater. Sci. Eng. A 678, 65 (2016).

    Article  CAS  Google Scholar 

  50. P.S. Singh, Z. Liang, G.M. Pharr, and M.P. de Boer, Creep of a thermally stable nanocrystalline nickel tungsten alloy as measured by high temperature nanoindentation. Mater. Sci. Eng. A 784, 139309 (2020).

    Article  CAS  Google Scholar 

  51. B.N. Lucas and W.C. Oliver, Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30(3), 601 (1999).

    Article  Google Scholar 

  52. M.J. Mayo and W.D. Nix, A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall. 36(8), 2183 (1988).

    Article  CAS  Google Scholar 

  53. B. Merle, W.H. Higgins, and G.M. Pharr, Critical issues in conducting constant strain rate nanoindentation tests at higher strain rates. J. Mater. Res. 34(20), 3495 (2019).

    Article  CAS  Google Scholar 

  54. W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    Article  CAS  Google Scholar 

  55. H. Li and A.H.W. Ngan, Size effects of nanoindentation creep. J. Mater. Res. 19(2), 513 (2004).

    Article  CAS  Google Scholar 

  56. G. **ao, Y. Ma, X. Ji, T. Wang, X. Shu, and E. Liu, Effective acquisition of elastoplastic and creep parameters of lead-free solder alloy from high-temperature micro-indentation eliminating the size effect. Mech. Mater. 160, 103985 (2021).

    Article  Google Scholar 

  57. M. Dao, N.V. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 3899 (2001).

    Article  CAS  Google Scholar 

  58. Y. Choi, H. Lee, and D. Kwon, Analysis of sharp-tip-indentation load-depth curve for contact area determination taking into account pile-up and sink-in effects. J. Mater. Res. 19(11), 3307 (2004).

    Article  CAS  Google Scholar 

  59. A.A. Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, Z. Liang, Properties of bulk sintered silver as a function of porosity. Oak Ridge Natl. Lab., ORNL, Oak Ridge, TN (U. S.), (2012).

  60. W.B. Morrison, The effect of grain size on the stress–strain relationship in low-carbon steel. ASM Trans. Q. 59(4), 824 (1966).

    CAS  Google Scholar 

  61. L. Thébaud, P. Villechaise, C. Crozet, A. Devaux, D. Béchet, J.M. Franchet, and J. Cormier, Is there an optimal grain size for creep resistance in Ni-based disk superalloys? Mater. Sci. Eng. A 716, 274 (2018).

    Article  Google Scholar 

  62. T. Sakthivel, G. Sasikala, and M. Vasudevan, Role of microstructures on heterogeneous creep behaviour across P91 steel weld joint assessed by impression creep testing. Mater Charact 159, 109988 (2020).

    Article  CAS  Google Scholar 

  63. O.D. Sherby, Factors affecting the high temperature strength of polcyrystalline solids. Acta Metall. 10(2), 135 (1962).

    Article  CAS  Google Scholar 

  64. Y. Dai, Z. Zan, S. Zhao, and F. Qin, Mode II cohesive zone law of porous sintered silver joints with nickel coated multiwall carbon nanotube additive under ENF test. Theor. Appl. Fract. Mech. 121, 103498 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the National Natural Science Foundation of China (12272012) and the Bei**g Municipal Natural Science Foundation (2204074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwei Dai or Fei Qin.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service or company that could be construed as influencing the position presented in, or the review of, this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Zan, Z., Zhao, L. et al. Nanoindentation Elastoplastic and Creep Behaviors of Sintered Nano-Silver Doped with Nickel-Modified Multiwall Carbon Nanotube Filler. J. Electron. Mater. 53, 1035–1057 (2024). https://doi.org/10.1007/s11664-023-10871-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10871-3

Keywords

Navigation