Log in

Effect of Near-Electric-Field 3D Printing on the β-Phase of PVDF Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High β-phase polyvinylidene fluoride (PVDF) thin films have excellent piezoelectricity and flexibility. They are widely used in wearable devices, hydroacoustic ultrasound, and energy harvesting. The preparation of PVDF thin films by near-electric-field 3D printing can be customized in shape, and the high β-phase can be obtained without stretching or polarization. In this work, the effects of polar solvent, printing voltage, and PVDF molecules on the β-phase content of PVDF thin films prepared by near-electric-field 3D printing were analyzed. The results show that the polarity of the solvent affects the molecular chain conformation of PVDF, which is favorable for the generation of the β-phase. With the increase of solvent polarity, the β-phase content in PVDF films increased from 21.40% to 26.31%. The mutual motion of the collecting plate and the needle will produce stronger mechanical traction on the PVDF fibers, which is due to the smaller diameter of the PVDF fibers caused by the high printing voltage. The joint action of this tensile force and the strong electric field attraction promotes the β-phase transition. When the printing voltage is 8 kV, the F(β) value of PVDF film is increased by 47.37% over that without applied voltage. In addition, the interaction of small and large PVDF molecular weight will also result in mechanical deformation of the molecular chain and promote the β-phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Yu, P. Jiang, C. Wu, L. Wang, and X. Wu, Graphene nanocomposites based on poly (vinylidene fluoride): structure and properties. Polym. Compos. 32, 1483 (2011).

    Article  CAS  Google Scholar 

  2. F. He, M. Sarkar, S. Lau, J. Fan, and L.H. Chan, Preparation and characterization of porous poly (vinylidene fluoride–trifluoroethylene) copolymer membranes via electrospinning and further hot pressing. Polym. Test. 30, 436 (2011).

    Article  CAS  Google Scholar 

  3. A. Wang, C. Chen, L. Liao, J. Qian, F.G. Yuan, and N. Zhang, Enhanced β-Phase in direct ink writing PVDF thin films by intercalation of graphene. J. Inorg. Organomet. 30, 1497 (2020).

    Article  CAS  Google Scholar 

  4. C. Chen, R. Zhang, J. Zhu, X. Qian, J. Zhu, X. Ye, and M. Zhang, Direct writing polyvinylidene difluoride thin films by intercalation of nano-ZnO. Polym. Eng. Sci. 61, 1802 (2021).

    Article  CAS  Google Scholar 

  5. A. Wang, M. Shao, F. Yang, C. Shao, and C. Chen, Preparation and properties of antibacterial PVDF composite thin films. Eur. Polym. J. 160, 110803 (2021).

    Article  CAS  Google Scholar 

  6. L. Liao, C. Chen, J. Qian, Y. Zhang, R. Zhang, and J. Zhu, Direct writing of PVDF piezoelectric film based on near electric field added by [Emim]BF4. Mater. Res. Express 7, 016437 (2020).

    Article  ADS  CAS  Google Scholar 

  7. A. Wang, C. Chen, J. Qian, F. Yang, L. Wang, and M. Zhang, Enhanced electrical properties of PVDF thin film by addition of NaCl by near-electric-field 3D printing. J. Electron. Mater. 50, 1781 (2021).

    Article  Google Scholar 

  8. W. Huang, Y. Wu, W. Chen, H. Chen, J. He, J. Yan, C. Chen, Y. Song, H. Ji, and H. Xu, Reinforcement effect in printing precision and sintering performance for liquid crystal display stereolithography additive manufacturing of alumina ceramics. Ceram. Int. 48, 33809 (2022).

    Article  CAS  Google Scholar 

  9. C. Chen, C. Shao, and A. Wang, Chemical exfoliating of boron nitride into edge-hydroxylated nanosheets. J. Mater. Sci. 58, 4416 (2023).

    Article  ADS  CAS  Google Scholar 

  10. C. Chen, M. Shao, K. Liu, W. Zhong, I. Djassi, and A. Wang, Enhanced thermal and electrical properties of photosensitive resin matrix composites with hexagonal boron nitride nanosheets. J. Inorg. Organomet. 33, 319 (2023).

    Article  CAS  Google Scholar 

  11. J. Zhu, C. Chen, and R. Zhang, Electroprinting of MWCNT-assisted PVDF thin films with enhanced electrical properties. Appl. Surf. Sci. Adv. 5, 100115 (2021).

    Article  Google Scholar 

  12. J. Luo, L. Zhang, T. Wu, H. Song, and C. Tang, Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method. Extreme Mech. Lett. 48, 101279 (2021).

    Article  Google Scholar 

  13. A. Wang, C. Chen, and Y. Zhang, Orthogonal anisotropic sensing and actuating characteristics of a 1–3 PZT piezoelectric microfiber composite. J. Electron. Mater. 49, 4903 (2020).

    Article  ADS  CAS  Google Scholar 

  14. C. Chen, J. Zhu, Y. Zhang, and A. Wang, Preparation and luminescence properties of PVDF/ZnS: Mn flexible thin-film sensors. Coatings 12, 449 (2022).

    Article  CAS  Google Scholar 

  15. A. Wang, J. Liu, C. Shao, Y. Zhang, and C. Chen, Electro-assisted 3d printing multi-layer PVDF/CaCl2 composite films and sensors. Coatings 12, 820 (2022).

    Article  CAS  Google Scholar 

  16. X. Zhou, K. Parida, O. Halevi, Y. Liu, J. **ong, S. Magdassi, and P.S. Lee, All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy 72, 104676 (2020).

    Article  CAS  Google Scholar 

  17. A. Porter, T.V.T. Hoang, and T.A. Berfield, Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit. Manuf. 13, 81 (2017).

    CAS  Google Scholar 

  18. S. Bodkhe, G. Turcot, F.P. Gosselin, and D. Therriault, One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9, 20833 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. S. Bodkhe, P.S.M. Rajesh, F.P. Gosselin, and D. Therriault, Simultaneous 3D printing and poling of PVDF and its nanocomposites. ACS Appl. Energy Mater. 1, 2474 (2018).

    Article  CAS  Google Scholar 

  20. H. Kim, F. Torres, Y. Wu, D. Villagran, Y. Lin, and T.L.B. Tseng, Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 26, 085027 (2017).

    Article  ADS  Google Scholar 

  21. H. Kim, F. Torres, D. Villagran, C. Stewart, Y. Lin, and T.L.B. Tseng, 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macromol. Mater. Eng. 302, 1700229 (2017).

    Article  Google Scholar 

  22. J.E. Lee, R. Nam, M.B. Jakubinek, B. Ashrafi, and H.E. Naguib, Development of PVDF nanocomposite with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT) for soft morphing actuator. Smart Mater. Struct. 30, 055014 (2021).

    Article  ADS  CAS  Google Scholar 

  23. G.B. Kim, C.U. Hong, and T.K. Kwon, Vibration characteristics of piezoelectric lead zirconate titanate by fluid flow in intravascular oxygenator. Jpn. J. Appl. Phys. 45, 3811 (2006).

    Article  ADS  CAS  Google Scholar 

  24. M.S. Wilm and M. Mann, Electrospray and Taylor–Cone theory, dole’s beam of macromolecules at last? Int. J. Mass Spectrom. Ion Process. 136, 167 (1994).

    Article  ADS  CAS  Google Scholar 

  25. C. Chen, F. Cai, Y. Zhu, L. Liao, J. Qian, F.G. Yuan, and N. Zhang, 3D printing of electroactive PVDF thin films with high β-phase content. Smart Mater. Struct. 28, 065017 (2019).

    Article  ADS  CAS  Google Scholar 

  26. T. Nishi and T.T. Wang, Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules 8, 909 (1975).

    Article  ADS  CAS  Google Scholar 

  27. J.D. Carbeck and G.C. Rutledge, A method for studying conformational relaxations by molecular simulation: conformational defects in α-phase poly (vinylidene fluoride). Macromolecules 29, 5190 (1996).

    Article  ADS  CAS  Google Scholar 

  28. A.K. Nandi and L. Mandclkcm, The influence of chain structure on the equilibrium melting temperature of poly (vinylidene fluoride). J. Polym. Sci. Pol. Phys. 29, 1287 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52175464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liu, K., Zhong, W. et al. Effect of Near-Electric-Field 3D Printing on the β-Phase of PVDF Thin Films. J. Electron. Mater. 53, 2076–2083 (2024). https://doi.org/10.1007/s11664-023-10869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10869-x

Keywords

Navigation