Log in

Impact of Cu Pillar Bump Diameter and Solder Material on Reflow Soldering: A Computational Study with Thermal Fluid–Structure Interaction

  • Topical Collection: Electronic Packaging and Interconnections 2023
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper aims to develop a thermal fluid–structure interaction (FSI) methodology to study the effect of different Cu pillar bump diameters on thermal and mechanical performance during the reflow soldering process. The desktop reflow oven is modeled in ANSYS FLUENT, while the ball grid array (BGA) package assembly is modeled in ANSYS STATIC STRUCTURAL. The accuracy of the simulated reflow temperature profile has been verified by comparing it with the experimental temperature data, according to JEDEC standards. The temperature distributions of solder and Cu pillar bumps are compared. A parametric study has been conducted to analyze the effect of different Cu pillar diameters on the reflow soldering process. By coupling the thermal loads with the structural analysis using thermal FSI, Cu pillar bumps with a diameter of 0.20 mm are found to exhibit the lowest reflow temperature, minimum temperature difference, and minimum deformation and thermal stress, making them the most suitable interconnection joints for flip chip technology. The study also examines the effect of soldering materials on the Cu pillar bump. The findings of this research provide valuable insights into the effects of varying Cu pillar diameters on the reflow soldering process, which can help in the development of more reliable electronic assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.R. Lee, M.S. Abdul Aziz, M.H.H. Ishak, and C.Y. Khor, A review on numerical approach of reflow soldering process for copper pillar technology. Int. J. Adv. Manuf. Technol. 121, 4325 (2022).

    Article  Google Scholar 

  2. C.S. Lau and M.Z. Abdullah, Simulation investigations on fluid/structure interaction in the reflow soldering process of board-level BGA packaging. Int. J. Comput. Theory Eng. 5(4), 645 (2013).

    Article  Google Scholar 

  3. C. Morando and O. Fornaro, Thermal properties of sn-based solder alloys. J. Mater. Sci. Mater. Electron. 25, 3440 (2014).

    Article  CAS  Google Scholar 

  4. F. Peng, W. Liu, Y. Ma, C. Liang, Y. Huang, and S. Tang, Microstructure of Sn-20In-2.8Ag solder and mechanical properties of joint with Cu. Solder. Surf. Mt. Technol. 31(1), 1 (2019).

    Article  Google Scholar 

  5. L. Liu, X. Zhao, P. Chen, Y. Liu, Y. Wang, W. Chen, and J. Wu, Effects of α-Fe2O3 additions on assembly reliability of electroplated Sn-based solder cap on Cu pillar bump during thermal cycling. J. Electron. Mater. 48, 1079 (2019).

    Article  CAS  ADS  Google Scholar 

  6. W.S. Tsai, C.Y. Huang, C.K. Chung, K.H. Yu, and C.F. Lin, Generational Changes of Flip Chip Interconnection Technology. Paper presented at the 2017 12th Int. Microsyst. Packag. Assem. Circuits Technol. Conf. (IMPACT), Taipei, Taiwan, 25-27 October 2017

  7. V. Thakur, S. Mallik, and V. Vuppala, CFD simulation of solder paste flow and deformation behaviours during stencil printing process. Int. J. Recent Adv. Mech. Eng. 4(1), 1 (2015).

    Article  Google Scholar 

  8. B. Wu, F. Wang, S. Zhang, and Z. Chen, Micro copper pillar interconnection using thermosonic flip chip bonding. J. Electron. Packag. 140(4), 044502 (2018).

    Article  Google Scholar 

  9. C.L. Hwang, Y.W. Wu, C.C. Wang, and C.S. Liu, U.S. Patent USOO8841766B2, 23 September 2014

  10. C. Henderson, Copper Pillar Bum** Technology, Semit. Mon. Newsl. 1 (2012)

  11. M. Datta, Manufacturing processes for fabrication of flip-chip micro-bumps used in microelectronic packaging: an overview. J. Micromanuf. 3(1), 69 (2020).

    Article  Google Scholar 

  12. W.W. Flack, H.A. Nguyen, E. Capsuto, and C. McEwen, Characterization of a thick copper pillar bump process. Paper presented at the 2007 12th Int. Symp. Adv. Packag. Mater.: Processes, Properties, and Interfaces, San Jose, CA, USA, 03-05 October 2007

  13. S.K. Kang, D.Y. Shih, and W.E. Bernier, in Advanced Flip Chip Packaging, ed. by H. M. Tong, Y. S. Lai, and C. P. Wong (Springer, Boston, MA, 2013), 85–154

  14. J.H. Lau, Recent advances and new trends in flip chip technology. J. Electron. Packag. 138(3), 030802 (2016).

    Article  Google Scholar 

  15. J.H. Lau, Fan-Out Wafer-Level Packaging, 1st ed., (Singapore: Springer, 2018), pp.21–68.

    Google Scholar 

  16. X.Q. Tang, S.J. Zhao, C.Y. Huang, and L.K. Lu, Thermal stress-strain simulation analysis of bga solder joint reflow soldering process. Paper presented at the 2018 19th Int. Conf. Electron. Packag. Technol. (ICEPT), Shanghai, China, 8-11 August 2018

  17. C. Yang, F. Song, and S.W. Ricky Lee, Impact of Ni concentration on the intermetallic compound formation and brittle fracture strength of Sn-Cu-Ni (SCN) lead-free solder joints. Microelectron. Reliab. 54(2), 435 (2014).

    Article  CAS  Google Scholar 

  18. M. Faizan, Dissolution of copper and formation of IMC in bulk lead-free solders. Mater. Manuf. Process. 30(2), 169 (2015).

    Article  CAS  Google Scholar 

  19. D.C. Whalley and S.M. Hyslop, A simplified model of the reflow soldering process. Solder. Surf. Mt. Technol. 14(1), 30 (2002).

    Article  Google Scholar 

  20. M.S. Abdul Aziz, M.Z. Abdullah, C.Y. Khor, A. Jalar, F. Che Ani, N. Yan, and C. Cheok, Finite volume-based simulation of the wave soldering process: influence of the conveyor angle on pin-through-hole capillary flow. Numer. Heat Transf. Part A Appl. 69(3), 295 (2016).

    Article  ADS  Google Scholar 

  21. D.C. Whalley, A simplified reflow soldering process model. J. Mater. Process. Technol. 150(1–2), 134 (2004).

    Article  ADS  Google Scholar 

  22. M.S. Abdul Aziz, M.Z. Abdullah, and C.Y. Khor, Thermal fluid–structure interaction of PCB configurations during the wave soldering process. Solder. Surf. Mt. Technol. 27(1), 31 (2015).

    Article  Google Scholar 

  23. D. Straubinger, I. Bozsóki, D. Bušek, B. Illés, and A. Géczy, Modelling of temperature distribution along PCB thickness in different substrates during reflow. Circuit World 46(2), 85 (2020).

    Article  Google Scholar 

  24. Y.S. Son and J.Y. Shin, Thermal response of electronic assemblies during forced convection-infrared reflow soldering in an oven with air injection. JSME Int J Ser Fluids Therm Eng 48(4), 865 (2005).

    Article  Google Scholar 

  25. A.M. Najib, M.Z. Abdullah, C.Y. Khor, and A.A. Saad, Experimental and numerical investigation of 3D gas flow temperature field in infrared heating reflow oven with circulating fan. Int. J. Heat Mass Transf. 87, 49 (2015).

    Article  Google Scholar 

  26. M.I. Ahmad, M.S. Abdul Aziz, M.Z. Abdullah, M. Salleh, M.A. Anuar, M.H.H. Ishak, W. Rahiman, and M. Nabiałek, Investigations of infrared desktop reflow oven with FPCB substrate during reflow soldering process. Metals. 11(8), 1155 (2021).

    Article  Google Scholar 

  27. M.S.A. Aziz, M.Z. Abdullah, C.Y. Khor, and F.C. Ani, Influence of pin offset in PCB through-hole during wave soldering process: CFD modeling approach. Int. Commun. Heat Mass Transf. 48, 116 (2013).

    Article  CAS  Google Scholar 

  28. M.S. Abdul Aziz, M.Z. Abdullah, C.Y. Khor, A. Jalar, and F. Che Ani, CFD modeling of pin shape effects on capillary flow during wave soldering. Int. J. Heat Mass Transf. 72, 400 (2014).

    Article  CAS  Google Scholar 

  29. M.S. Abdul Aziz, M.Z. Abdullah, C.Y. Khor, F. Che Ani, and N.H. Adam, Effects of temperature on the wave soldering of printed circuit boards: CFD modeling approach. J. Appl. Fluid Mech. 9, 2053 (2016).

    Article  Google Scholar 

  30. Y. Tian, N. Ren, X. Jian, T. Geng, and Y. Wu, Interfacial compounds characteristic and its reliability effects on SAC305 microjoints in flip chip assemblies. J. Electron. Packag. 140(3), 031007 (2018).

    Article  Google Scholar 

  31. J. Shen, D. Zhai, Z. Cao, M. Zhao, and Y. Pu, Fracture behaviors of Sn-Cu intermetallic compound layer in ball grid array induced by thermal shock. J. Electron. Mater. 43, 567 (2014).

    Article  CAS  ADS  Google Scholar 

  32. X.J. Long, J.T. Shang, and L. Zhang, Design optimization of pillar bump structure for minimizing the stress in brittle low K dielectric material layer. Acta Metall. Sin. (Engl. Lett.) 33, 583 (2020).

    Article  CAS  Google Scholar 

  33. F.X. Che, J.K. Lin, K.Y. Au, H.Y. Hsiao, and X. Zhang, Stress analysis and design optimization for low-k chip with Cu pillar interconnection. IEEE Trans. Components Packag. Manuf. Technol. 5(9), 1273 (2015).

    Article  CAS  Google Scholar 

  34. M.K. Shih and P.C. Hong, Structural Design Guideline for Cu Pillar Bump Reliability in System in Packages Module. Paper presented at the 2015 IEEE 17th Electron. Packag. Technol. Conf. (EPTC), Singapore, 2-4 December 2015

  35. H. Sun, B. Gao, and J. Zhao, hermal-mechanical reliability analysis of WLP with fine-pitch copper post bumps. Solder. Surf. Mt. Technol. 33(3), 178 (2021).

    Article  Google Scholar 

  36. V. Lin, N. Kao, D.S. Jiang, and C.S. Hsiao, Stress simulation and design optimal study for Cu pillar bump structure. Paper presented at the 2013 IEEE 15th Electron. Packag. Technol. Conf. (EPTC 2013), Singapore, 11-13 December 2013

  37. M. Yamabe, M. Fukumitsu, and Y. Fukuchi, Effect on lead-free solder joint reliability caused by solder volume. Weld. Int. 25(11), 851 (2011).

    Article  Google Scholar 

  38. K.M. Chen, C.Y. Wu, C.H. Wang, H.C. Cheng, and N.C. Huang, An RDL UBM structural design for solving ultralow-K delamination problem of Cu pillar bump flip chip BGA packaging. J. Electron. Mater. 43, 4229 (2014).

    Article  CAS  ADS  Google Scholar 

  39. L. Shi, L. Chen, D.W. Zhang, E. Liu, Q. Liu, and C.I. Chen, Improvement of thermo-mechanical reliability of wafer level chip scale packaging. J. Electron. Packag. 140(1), 011002 (2018).

    Article  Google Scholar 

  40. J.R. Lee, M.S. Abdul Aziz, M.F.R. Rosli, M.S. Rusdi, R. Kamaruddin, M.H.H. Ishak, and M.A.A. Mohd Salleh, in Springer Proceedings in Physics, ed. by M. A. A. Mohd Salleh, D. S. Che Halin, K. Abdul Razak, M. I. I. Ramli. Proc. Packag. Interconnect Electron. Green Mater. Technol. Symp. (EPITS 2022), Langkawi, Malaysia, 14-15 September 2022. Investigation of Thermal Reflow Profile for Copper Pillar Technology, vol. 289 (Springer, Singapore, 2023), p. 83-91

  41. 4.1 Standard k-epsilon Model (ANSYS Inc, 2009), https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node58.htm. Accessed 15 August 2023

  42. 4.2 RNG k-epsilon Model (ANSYS Inc, 2009), https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node59.htm. Accessed 15 August 2023

  43. D.Q. Yu, J. Zhao, and L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements. J. Alloys Compd. 376(1–2), 170 (2004).

    Article  CAS  Google Scholar 

  44. I. Shohji, T. Osawa, T. Matsuki, Y. Kariya, K. Yasuda, and T. Takemoto, Effect of specimen size and aging on tensile properties of Sn-Ag-Cu lead-free solders. Mater. Trans. 49(5), 1175 (2008).

    Article  CAS  Google Scholar 

  45. S.M.L. Nai, J. Wei, and M. Gupta, Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J. Electron. Mater. 37, 515 (2008).

    Article  CAS  ADS  Google Scholar 

  46. M.I. Ahmad, Thermal Fluid-Structure Interaction Analysis on Flexible Printed Circuit Board during Reflow Soldering, Dissertation, Universiti Sains Malaysia, 2021

  47. P. Verboven, N. Scheerlinck, J. De Baerdemaeker, and B.M. Nicolaï, Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven. J. Food Eng. 43(2), 61 (2000).

    Article  Google Scholar 

  48. R. Raj, P. Shrivastava, N. **dal, S.N. Alam, N. Naithani, M. Padhy, A.S.D. Phani, T.V.V Ramana, and M.M. Abbas, Development and Characterization of Eutectic Sn-Zn, Sn-Ag, Sn-Bi and Sn-Cu Solder Alloys. Paper presented at the Int. Conf. Process. Charact. Mater. (ICPCM 2018), Rourkela, India, 6-8 December 2018

  49. S.S. Sriperumbudur, Effects of Solder Paste Volume on PCBA Assembly Yield and Reliability, Dissertation, Rochester Institute of Technology, 2016

Download references

Acknowledgments

The work is financially supported by the Ministry of Higher Education under Fundamental Research Grant Scheme, FRGS (Grant number FRGS/1/2020/TK0/USM/03/6). The authors would also like to thank Universiti Sains Malaysia and Western Digital Sdn. Bhd. for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sharizal Abdul Aziz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.R., Abdul Aziz, M.S., Khor, C.Y. et al. Impact of Cu Pillar Bump Diameter and Solder Material on Reflow Soldering: A Computational Study with Thermal Fluid–Structure Interaction. J. Electron. Mater. 53, 1201–1213 (2024). https://doi.org/10.1007/s11664-023-10855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10855-3

Keywords

Navigation