Log in

Influence of Ag Nanoparticles on the Photoluminescence of WO3-WS2 Flake

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A composite of WO3 and WS2 has a wider wavelength range of light adsorption and light emission than WS2. A noble metal nanostructure can be utilized to adjust the photoluminescence (PL) of luminescent materials. In this study, WO3-WS2 flakes were synthesized. A straightforward bath method has been employed to synthesize Ag nanoparticles (NPs). The average size of Ag NPs is approximately 60 nm. The Fourier transform infrared (FT-IR) peak of WO3-WS2 flake at 495 cm−1 is from an alkane S–S bond stretching vibration. The PL intensity of WO3-WS2 was attenuated subsequent to its integration with Ag NPs. The PL quantum yield of the WO3-WS2/Ag composite can reach 0.11%. This occurrence can be explained by the pronounced resonance absorption and diminished light extraction induced by the Ag NPs. This decreased light emission of the Ag NPs incorporated with WO3-WS2 may be employed in some situations needing extinction, such as photography and projection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao, and J. Ou, Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020).

    Article  CAS  Google Scholar 

  2. J. Liang, Y. Du, K. Wang, A. Ren, X. Dong, C. Zhang, J. Tang, Y. Yan, and Y.S. Zhao, Ultrahigh color rendering in RGB perovskite micro-light-emitting diode arrays with resonance-enhanced photon recycling for next generation displays. Adv. Opt. Mater. 10, 2101642 (2022).

    Article  CAS  Google Scholar 

  3. Y. Huang, E. Hsiang, M. Deng, and S. Wu, Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Sci. Appl. 9, 105 (2020).

    Article  CAS  Google Scholar 

  4. S. Chen, Y. Zhao, S. Wang, H. Li, and P. Liu, in Proceedings of SPIE (2020), p. 1155010

  5. K. Wang, Y. Du, J. Liang, J. Zhao, F. Xu, X. Liu, C. Zhang, Y. Yan, and Y. Zhao, Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays. Adv. Mater. 32, 2001999 (2020).

    Article  CAS  Google Scholar 

  6. C. Yelgel, O.C. Yelgel, and O. Gulseren, Structural and electronic properties of MoS2, WS2, and WS2/MoS2 heterostructures encapsulated with hexagonal boron nitride monolayers. J. Appl. Phys. 122, 065303 (2017).

    Article  Google Scholar 

  7. Q. Cui, Z. Luo, Q. Cui, W. Zhu, H. Shou, C. Wu, Z. Liu, Y. Lin, P. Zhang, S. Wei, H. Yang, S. Chen, A. Pan, and L. Song, Robust and high photoluminescence in WS2 monolayer through in situ defect engineering. Adv. Funct. Mater. 31, 2105339 (2021).

    Article  CAS  Google Scholar 

  8. B. Zheng, W. Zheng, Y. Jiang, S. Chen, D. Li, C. Ma, X. Wang, W. Huang, X. Zhang, H. Liu, F. Jiang, L. Li, X. Zhuang, X. Wang, and A. Pan, WO3−WS2 vertical bilayer heterostructures with high photoluminescence quantum yield. J. Am. Chem. Soc. 141, 11754 (2019).

    Article  CAS  Google Scholar 

  9. Z. Cheng, Z. Li, R. Yao, K. **ong, G. Cheng, Y. Zhou, X. Luo, and Z. Liu, Improved SERS performance and catalytic activity of dendritic Au/Ag bimetallic nanostructures based on Ag dendrites. Nanoscale Res. Lett. 15, 117 (2020).

    Article  CAS  Google Scholar 

  10. W. Nie, S. Jiang, R. Li, F. Ren, A.H.A. Clayton, S. Juodkazis, and F. Chen, Plasmon-induced photoluminescence and Raman enhancement in Pr:CaF2 crystal by embedded silver nanoparticles. Appl. Surf. Sci. 530, 147018 (2020).

    Article  CAS  Google Scholar 

  11. W. Yang, H. Li, J. Chen, J. Yin, J. Li, Y. Wu, B. Mo, T. Wu, B. Sun, Z. Wu, H. Wang, L. Dong, and G. Wang, Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays. Appl. Surf. Sci. 504, 144252 (2020).

    Article  CAS  Google Scholar 

  12. H. Kim, S. Moon, J. Kim, S.H. Nam, D.H. Kim, J.S. Lee, K. Kim, E.S.H. Kang, K.J. Ahn, T. Kim, C. Shin, and Y.D. Suh, Purcell-enhanced photoluminescence of few-layer MoS2 transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge. Nanoscale 13, 5316 (2021).

    Article  CAS  Google Scholar 

  13. N. Chiang, N. Jiang, D.V. Chulhai, E.A. Pozzi, M.C. Hersam, L. Jensen, T. Seideman, and R.P. Duyne, Molecular-resolution interrogation of a porphyrin monolayer by ultrahigh vacuum tip-enhanced Raman and fluorescence spectroscopy. Nano Lett. 15, 4114 (2015).

    Article  CAS  Google Scholar 

  14. Z. Liang, X. Zhang, J. Yang, Y. Cheng, H. Hou, S. Hussain, J. Liu, G. Qiao, and G. Liu, Facile fabrication of nanoflower-like WO3/WS2 heterojunction for highly sensitive NO2 detection at room temperature. J. Hazard. Mater. 443, 130316 (2023).

    Article  CAS  Google Scholar 

  15. P. Gultom, J.Y. Chiang, T.T. Huang, J.C. Lee, S.H. Su, and J.C.A. Huang, Structural and optical properties of tungsten disulfide nanoscale films grown by sulfurization from W and WO3. Nanomaterials 13, 1276 (2023).

    Article  CAS  Google Scholar 

  16. C.Y. Wang, L.Y. Xu, H.N. **, C. Li, Z. Zhang, L.Y. Li, Y.B. Chen, J. Su, N.S. Liu, J.J. Lai, F. Long, X.L. Jiang, and Y.H. Gao, Yb/Er coordinatively do** in bilayer WSe2 for fascinating up-conversion luminescence. Nano Energy 78, 105317 (2020).

    Article  CAS  Google Scholar 

  17. Y. Liu, X. Hu, T. Wang, and D. Liu, Reduced binding energy and layer-dependent exciton dynamics in monolayer and multilayer WS2. ACS Nano 13, 14416 (2019).

    Article  CAS  Google Scholar 

  18. B.B. Wang, X.X. Zhong, J. Zhu, Y.Y. Wang, Y.C. Zhang, and K. Ostrikov, Single-step synthesis of TiO2/WO3-x hybrid nanomaterials in ethanoic acid: structure and photoluminescence properties. Appl. Surf. Sci. 562, 150180 (2021).

    Article  CAS  Google Scholar 

  19. C.Y. Chang, C.L. Yu, C.A. Lin, H.T. Lin, A.B. Lee, Z.Z. Chen, L.S. Lu, W.H. Chang, H.C. Kuo, and M.H. Shih, Hybrid composites of quantum dots, monolayer WSe2, and Ag nanodisks for white light-emitting diodes. ACS Appl. Nano Mater. 3, 6855 (2020).

    Article  CAS  Google Scholar 

  20. C.W. Zou, M.Y. Chen, X.F. Luo, H. Zhou, T. Yu, and C.L. Yuan, Enhanced photoluminescence of WS2/WO3 heterostructural QDs. J. Alloys Compd. 834, 155066 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (12264014). The work was also supported by Scientific Research Project of Education Department of Jiangxi Province (GJJ210660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyun Wang.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhou, Y. & Liu, Z. Influence of Ag Nanoparticles on the Photoluminescence of WO3-WS2 Flake. J. Electron. Mater. 53, 899–906 (2024). https://doi.org/10.1007/s11664-023-10830-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10830-y

Keywords

Navigation