Log in

Enhanced Microwave Dielectric Properties of the Ba2TiSi2O8 Ceramic by the Addition of TiO2

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work studies the dielectric properties in the microwave region (MW) of the Ba2TiSi2O8 (BTS) ceramic with TiO2 additions and its applications as a dielectric resonator antenna (DRA). In this study, structural characterization through x-ray diffraction (XRD) is performed and the Rietveld refinement is used to confirm the phases formed. Analysis of the morphology of the materials is performed using scanning electron microscopy (SEM). The resonant frequency temperature coefficient (τf) reveals a variation from − 47.0 ppm°C−1 to + 16.5 ppm°C−1. The dielectric properties in the MW region reveal an increase in the dielectric permittivity (εr) and a decrease in the loss tangent (tanδ) of the samples. Numerical simulation shows good fits of the experimental data, with gain and directivity standing out, ranging from 4 dBi to 6 dBi and radiation efficiency below 80%. The results demonstrate that the samples can operate in C-band electronics, Wi-Fi devices, meteorological radar systems, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, and V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Hoboken: Wiley, 2004).

    Book  Google Scholar 

  2. D. Kajfez and P. Guillon, Dielectric Resonators, 2nd ed., (Atalnta: Noble Publishing Corporation Atalnta, 1998).

    Google Scholar 

  3. A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties, Applications (Chichester: Wiley, 2003).

    Book  Google Scholar 

  4. M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st ed., (Oxford: Elsevier, 2008).

    Google Scholar 

  5. S. Zhou, Q. Wu, H. Xu, X. Luan, S. Hu, X. Zhou, S. He, X. Wang, H. Zhang, X. Chen, and H. Zhou, Sintering behavior, phase structure and microwave dielectric properties of CeO2 added CaTiO3-SmAlO3 ceramics prepared by reaction sintering method. Ceram. Int. 47, 32433 (2021).

    Article  CAS  Google Scholar 

  6. X. Zhou, L. Liu, J. Sun, N. Zhang, H. Sun, H. Wu, and W. Tao, Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 10, 778 (2021).

    Article  CAS  Google Scholar 

  7. C. Feng, X. Zhou, B. Tao, H. Wu, and S. Huang, Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1−x(Al1/2Ta1/2)x]3(MoO4)9 ceramics at microwave frequency. J. Adv. Ceram. 11, 392 (2022).

    Article  CAS  Google Scholar 

  8. B. Liu and K.X. Song, Vibrational spectroscopy and microwave dielectric properties of two novel Ca3Ln2W2O12 (Ln = La, Sm) tungstate ceramics. Mater. Res. Bull. 133, 111022 (2021).

    Article  CAS  Google Scholar 

  9. J.T. Alfors, M.C. Stinson, R.A. Matthews, and A. Pabst, Seven new barium minerals from eastern Fresno County California. Am. Mineral. J. Earth Planet. Mater. 50, 314 (1965).

    CAS  Google Scholar 

  10. P.B. Moore and J. Louisnathan, Fresnoite: unusal titanium coordination. Science 156, 1361 (1967).

    Article  CAS  Google Scholar 

  11. G. Blasse, Fluorescence of compounds with fresnoite (Ba2TiSi2O8) structure. J. Inorg. Nucl. Chem. 30, 2283 (1968).

    Article  CAS  Google Scholar 

  12. C. Shen, D. Wang, J. Zhang, H. Zhang, J. Wang, and R.I. Boughton, The growth and investigations of electromechanical properties of Fresnoite Ba2Si2TiO8 crystal as a function of orientation. J. Cryst. Growth 487, 17 (2018).

    Article  CAS  Google Scholar 

  13. Q. Shi, T.-J. Park, J. Schliesser, A. Navrotsky, and B.F. Woodfield, Low temperature heat capacity study of Ba2TiSi2O8 and Sr2TiSi2O8. J. Chem. Thermodyn. 72, 77 (2014).

    Article  CAS  Google Scholar 

  14. T. Asahi, T. Osaka, J. Kobayashi, S.C. Abrahams, S. Nanamatsu, and M. Kimura, Optical study on a phase transition of fresnoite Ba2Si2TiO8. Phys. Rev. B 63, 094104 (2001).

    Article  Google Scholar 

  15. C. Shen, H. Zhang, H. Cong, H. Yu, J. Wang, and S. Zhang, Investigations on the thermal and piezoelectric properties of fresnoite Ba2TiSi2O8 single crystals. J. Appl. Phys. 116, 044106 (2014).

    Article  Google Scholar 

  16. M. Roy, S.K. Barbar, P. Dave, S. Jangid, and I. Bala, X-ray, scanning electron microscopy and electrical properties of synthetic fresnoite (Ba2TiSi2O8) ceramics. Appl. Phys. A Mater. Sci. Process. 100, 1191 (2010).

    Article  CAS  Google Scholar 

  17. E.E. Abbott, M. Mann, and J.W. Kolis, Hydrothermal synthesis of compounds in the fresnoite mineral family (Ba2TiSi2O8). J. Solid State Chem. 184, 1257 (2011).

    Article  CAS  Google Scholar 

  18. W. Wisniewski, K. Thieme, and C. Rüssel, Fresnoite glass-ceramics—a review. Prog. Mater. Sci. 98, 68 (2018).

    Article  CAS  Google Scholar 

  19. C. Jiang, C. Zhang, F. Li, L. Sun, Y. Li, F. Yu, and X. Zhao, Phase transition regulation and piezoelectric performance optimization of fresnoite crystals for high-temperature acceleration sensing. J. Mater. Chem. C 10, 180 (2022).

    Article  CAS  Google Scholar 

  20. R.A.M. Osman and M.S. Idris, Electrical properties of fresnoite Ba2TiSi2O8 using impedance spectroscopy. Adv. Mater. Res. 795, 640 (2013).

    Article  Google Scholar 

  21. Z. Fang, X. **ao, X. Wang, Z. Ma, E. Lewis, G. Farrell, P. Wang, J. Ren, H. Guo, and J. Qiu, Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers. Sci. Rep. 7, 44456 (2017).

    Article  CAS  Google Scholar 

  22. R.F. Abreu, T.O. Abreu, D.M. da Colares, S.O. Saturno, J.P.C. do Nascimento, F.A.C. Nobrega, A. Ghosh, S.J.T. Vasconcelos, J.C. Sales, H.D. de Andrade, I.S.Q. Júnior, and A.S.B. Sombra, Evaluation of dielectric properties of the barium titanium silicate (Ba2TiSi2O8) for microwave applications. J. Mater. Sci. Mater. Electron. 32, 7034 (2021).

    Article  CAS  Google Scholar 

  23. C. Min, H. Zhu, Y. Wang, Q. Zhang, F. Yan, and X. Wang, Preparation and microwave dielectric properties of BaMoO4-Ba3(VO4)2 ceramic composites. J. Mater. Sci. Mater. Electron. 30, 9507 (2019).

    Article  CAS  Google Scholar 

  24. T.L. Tang, W.S. **a, B. Zhang, Y. Wang, M.X. Li, and L.W. Shi, Optimization on quality factor of LaNbO4 microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 30, 15293 (2019).

    Article  CAS  Google Scholar 

  25. H. Tian, J. Zheng, L. Liu, H. Wu, H. Kimura, Y. Lu, and Z. Yue, Structure characteristics and microwave dielectric properties of Pr2(Zr1−xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient. J. Mater. Sci. Technol. 116, 121 (2022).

    Article  CAS  Google Scholar 

  26. C.-L. Huang, J.-L. Huang, and T.-H. Hsu, Microwave dielectric properties of novel Na2Mg5xZnx(MoO4)6 (x = 0–0.09) ceramics for ULTCC applications. Mater. Res. Bull. 141, 111355 (2021).

    Article  CAS  Google Scholar 

  27. A. Okaya and L. Barash, The dielectric microwave resonator. Proc. IRE 50, 2081 (1962).

    Article  Google Scholar 

  28. S.B. Cohn, Microwave bandpass filters containing high-Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 16, 218 (1968).

    Article  Google Scholar 

  29. M.A.S. Silva, R.G.M. Oliveira, and A.S.B. Sombra, Dielectric and microwave properties of common sintering aids for the manufacture of thermally stable ceramics. Ceram. Int. 45, 20446 (2019).

    Article  CAS  Google Scholar 

  30. B.W. Hakki and P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  31. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476 (1970).

    Article  Google Scholar 

  32. M.A.S. Silva, T.S.M. Fernandes, and A.S.B. Sombra, An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τf). J. Appl. Phys. 112, 074106 (2012).

    Article  Google Scholar 

  33. M.T. Sebastian, M.A.S. Silva, and A.S.B. Sombra, Microwave Materials and Applications (Chichester: Wiley, 2017).

    Book  Google Scholar 

  34. T.O. Abreu, R.F. Abreu, F.F. do Carmo, W.V. de Sousa, H.O. de Barros, J.E.V. de Morais, J.P.C. do Nascimento, M.A.S. da Silva, S. Trukhanov, A. Trukhanov, L. Panina, C. Singh, and A.S.B. Sombra, A novel ceramic matrix composite based on YNbO4-TiO2 for microwave applications. Ceram. Int. 47, 15424 (2021).

    Article  CAS  Google Scholar 

  35. A. Petosa, Dielectric Resonator Antenna Handbook (Ann Arbor: Artech House, Universidade de Michigan, 2007).

    Google Scholar 

  36. K.M. Luk and K.W. Leung, Dielectric Resonator Antennas, 1st ed., (Baldock, England: Research Studies Pr Ltd, 2003).

    Google Scholar 

  37. J.-M. Wu and H.-W. Wang, Factors affecting the formation of Ba2Ti9O20. J. Am. Ceram. Soc. 71, 869 (1988).

    Article  CAS  Google Scholar 

  38. A. Rose, B. Masin, K. Ashok, H. Sreemoolanadhan, and T. Vijayakumar, Analysis on the influence of ZnO addition on microwave dielectric properties of Li2MgSiO4 ceramics. Bull. Mater. Sci. 42, 259 (2019).

    Article  Google Scholar 

  39. A. Ali, A. Zaman, A.H. Jabbar, V. Tirth, A. Algahtani, A. Alhodaib, I. Ullah, S.J. Ahmed, and M. Aljohani, Effects of strontium on the structural, optical, and microwave dielectric properties of Ba2Ti9O20 ceramics synthesized by a mixed oxide route. ACS Omega 7, 25573 (2022).

    Article  CAS  Google Scholar 

  40. F.F. Wu, D. Zhou, C. Du, B.B. **, C. Li, Z.M. Qi, S. Sun, T. Zhou, Q. Li, and X.Q. Zhang, Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1xBix)NbO4(x = 0–0.15) microwave dielectric ceramics. ACS Appl. Mater. Interfaces. 14, 7030 (2022).

    Article  CAS  Google Scholar 

  41. C.A. Balanis, Modern Antenna Handbook (Hoboken: Wiley, 2011).

    Google Scholar 

  42. M. Haydoura, R. Benzerga, C. Le Paven, L. Le Gendre, V. Laur, A. Chevalier, A. Sharaiha, F. Tessier, and F. Cheviré, Perovskite (Sr2Ta2O7)100x(La2Ti2O7)x ceramics: from dielectric characterization to dielectric resonator antenna applications. J. Alloys Compd. 872, 159728 (2021).

    Article  CAS  Google Scholar 

  43. C. Poole and I. Darwazeh, Microwave Active Circuit Analysis and Design, 1st ed., (Cambridge: Academic Press, 2015).

    Google Scholar 

  44. D.M. Pozar, Microwave Engineering, 4th ed., (Hoboken: Wiley, 2011).

    Google Scholar 

  45. C.A. Balanis, Antenna Theory: Analysis and Design, 4th ed., (Hoboken: Wiley, 2016).

    Google Scholar 

  46. W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 3rd ed., (Hoboken: Wiley, 2012).

    Google Scholar 

  47. R.V. Leite, F.O.S. Costa, M.T. Sebastian, A.J.M. Sales, and A.S.B. Sombra, Experimental and numerical investigation of dielectric resonator antenna based on doped Ba(Zn1/3Ta2/3)O3 ceramic. J. Electromagn. Waves Appl. 33, 84 (2019).

    Article  Google Scholar 

  48. R.F. Abreu, S.O. Saturno, J.P.C. do Nascimento, E.O. Sancho, J.E.V. de Morais, J.C. Sales, D.X. Gouveia, H.D. de Andrade, I.S. Queiroz Júnior, and A.S.B. Sombra, Dielectric characterisation and numerical investigation of SrBi2Nb2O9-Bi2O3 composites for applications in microwave range. J. Electromagn. Waves Appl. 34, 1705 (2020).

    Article  Google Scholar 

  49. K. Chang, RF and Microwave Wireless Systems (New York: Wiley, 2000).

    Book  Google Scholar 

  50. H.-H. Guo, M.-S. Fu, D. Zhou, C. Du, P.-J. Wang, L.-X. Pang, W.-F. Liu, A.S.B. Sombra, and J.-Z. Su, Design of a high-efficiency and -gain Antenna using novel low-loss, temperature-stable Li2Ti1x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces 13, 912 (2021).

    Article  CAS  Google Scholar 

  51. L.O. Azevedo, S.J.T. Vasconcelos, H.D. Andrade, I.S.Q. Júnior, R.S. Silva, and A.S.B. Sombra, Design and characterization study of LaFeO3 and CaTiO3 composites at microwave frequencies and their applications as dielectric resonator antennas. Ceram. Int. 47, 33232 (2021).

    Article  CAS  Google Scholar 

  52. B. Liu, K. Sha, M.F. Zhou, K.X. Song, C.C. Hu, and C. Lu, Cold sintering assisted CaF2 microwave dielectric ceramics for C-band antenna applications. J. Eur. Ceram. Soc. 42, 5698 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant INCT NANO(BIO)SIMES, 402045/2013-0, and 402561/2007-4, Edital MCT/CNPq no 10/2007), CAPES- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant Project PNPD), FINEP-Financiadora de Estudos e Projetos (Grant INFRAPESQ-11 and INFRAPESQ-12), the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127), and the X-Ray Laboratory of the Federal University of Ceará for XRD analysis. The authors are very thankful to Centro Brasileiro de Pesquisas Físicas (Labnano / CBPF) where the SEM analyzes were carried out.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant INCT NANO(BIO)SIMES 402045/2013-0, 402561/2007-4),Edital MCT/CNPq no 10/2007), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant Project PNPD), Financiadora de Estudos e Projetos (Grant INFRAPESQ-11, INFRAPESQ-12), Air Force Office of Scientific Research (FA9550-16-1-0127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Abreu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, R.F., Saturno, S.O., da M. Colares, D. et al. Enhanced Microwave Dielectric Properties of the Ba2TiSi2O8 Ceramic by the Addition of TiO2. J. Electron. Mater. 52, 8050–8064 (2023). https://doi.org/10.1007/s11664-023-10718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10718-x

Keywords

Navigation