Log in

Performance Analysis of MoTe2/MoSe2 and MoTe2/WSe2 Heterostructure Double-Gate MOSFET

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the performance of a heterostructure molybdenum ditelluride (MoTe2/MoSe2 and MoTe2/WSe2) double-gate (DG) metal–oxide–semiconductor field-effect transistor (MOSFET) was investigated using a hybrid methodology. The device characteristics were obtained using 2H-type bilayer MoTe2 and a heterobilayer of MoTe2/MoSe2 and MoTe2/WSe2 as channel material in a DG MOSFET. The methodology uses both the QuantumWise Atomistix ToolKit (ATK) and Sentaurus TCAD (technology computer-aided design) tool to simulate the device characteristics. First, density functional theory was used to simulate the electrical parameters of bilayer 2H-MoTe2, heterobilayer MoTe2/MoSe2, and MoTe2/WSe2. The parameters (bandgap and effective mass, mobility, etc.) obtained using the atomistic simulator tool were exported into Sentaurus TCAD to simulate the drain current characteristics, such as on-current (Ion), Ion/Ioff ratio, subthreshold swing, and threshold voltage. The noise performance of the devices was also studied for the heterostructure DG MOSFET using impedance field method and compared with its bilayer MoTe2 counterpart values. Noise parameters such as noise power spectral density (SID) and noise figure as a function of both frequency and bias were also simulated, and noise components such as generation–recombination (G-R) noise, flicker noise, and white noise were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.V. Phuc, N.N. Hieu, B.D. Hoi, N.V. Hieu, T.V. Thu, N.M. Hung, and C.V. Nguyen, Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations. J. Electron. Mater. 47, 730 (2018).

    Article  CAS  Google Scholar 

  2. J.H. Huang, X.F. Wang, Y.S. Liu, and L.P. Zhou, Electronic properties of armchair black phosphorene nanoribbons edge-modified by transition elements V, Cr, and Mn. Nanoscale Res. Lett. 14(1), 1 (2019).

    Article  Google Scholar 

  3. A. Pandya, K. Sangani, and P.K. Jha, Band gap determination of graphene, h-boron nitride, phosphorene, silicene, stanene, and germanene nanoribbons. J. Phys. D Appl. Phys. 53(41), 415103 (2020).

    Article  CAS  Google Scholar 

  4. A. Zunger, S. Wagner, and P.M. Petroff, New materials and structures for photovoltaics. J. Electron. Mater. 22, 3 (1993).

    Article  CAS  Google Scholar 

  5. T. Chekke, R. Narzary, S. Ngadong, B. Satpati, S. Bayan, and U. Das, 2D WS2-based single-electrode triboelectric nanogenerator for power generation and motion sensing. J. Electron. Mater. 52, 2685 (2023).

    Article  CAS  Google Scholar 

  6. C. Ruppert, B. Aslan, and T.F. Heinz, Optical properties and band gap of single-and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231 (2014).

    Article  CAS  Google Scholar 

  7. S. Aftab, M.W. Iqbal, H.M.S. Ajmal, M. Ishfaq, M.J. Iqbal, and M.Z. Iqbal, Self-biased photovoltaic behavior in van der Waals MoTe2/MoSe2 heterostructures. Physica E 134, 114912 (2021).

    Article  CAS  Google Scholar 

  8. P.R. Pudasaini, A. Oyedele, C. Zhang, M.G. Stanford, N. Cross, A.T. Wong, and P.D. Rack, High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 11, 722 (2018).

    Article  CAS  Google Scholar 

  9. K. Sangani, A. Pandya, and P.K. Jha, Theoretical insights on bandgap engineering for nanoribbons of the 2D materials family with Co-adatoms. J. Electron. Mater. 50(9), 5244 (2021).

    Article  CAS  Google Scholar 

  10. P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu, B. Yu, and X. Duan, 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122(6), 6514 (2022).

    Article  CAS  Google Scholar 

  11. A. Nourbakhsh, A. Zubair, R.N. Sajjad, K.G. Tavakkoli, W. Chen, S. Fang, X. Ling, J. Kong, M.S. Dresselhaus, E. Kaxiras, K.K. Berggren, D. Antoniadis, and T. Palacios, MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 16(12), 7798 (2016).

    Article  CAS  Google Scholar 

  12. H. Tian, Y. Shen, Z. Yan, Y. Liu, F. Wu, and T.L. Ren, The insight and evaluation of ultra-scaled sub-1 nm gate length transistors. Microelectron. Eng. 273, 111963 (2023).

    Article  CAS  Google Scholar 

  13. H. Ji, M.K. Joo, H. Yi, H. Choi, H.Z. Gul, M.K. Ghimire, and S.C. Lim, Tunable mobility in double-gated MoTe2 field-effect transistor: effect of coulomb screening and trap sites. ACS Appl. Mater. Interfaces 9(34), 29185 (2017).

    Article  CAS  Google Scholar 

  14. Y. Liu, and X. Cheng, Modulation of the electronic properties of two-dimensional MoTe2/WSe2 heterostructure by electrical field. Physica E 108, 90 (2019).

    Article  CAS  Google Scholar 

  15. H. Luo, B. Wang, E. Wang, X. Wang, Y. Sun, and K. Liu, High-responsivity photovoltaic photodetectors based on MoTe2/MoSe2 van der Waals heterojunctions. Crystals 9(6), 315 (2019).

    Article  CAS  Google Scholar 

  16. H. Bae, S.H. Kim, S. Lee, M. Noh, O. Karni, A.L. O’Beirne, and H. Choi, Light absorption and emission dominated by trions in the Type-I van der Waals heterostructures. ACS Photonics 8(7), 1972 (2021).

    Article  CAS  Google Scholar 

  17. T. Yamaoka, H.E. Lim, S. Koirala, X. Wang, K. Shinokita, M. Maruyama, S. Okada, Y. Miyauchi, and K. Matsuda, Efficient photocarrier transfer and effective photoluminescence enhancement in type I monolayer MoTe2/WSe2 heterostructure. Adv. Funct. Mater. 28, 1801021 (2018). https://doi.org/10.1002/adfm.201801021.

    Article  CAS  Google Scholar 

  18. A.B. Patel, P. Chauhan, K. Patel, C.K. Sumesh, S. Narayan, K.D. Patel, G.K. Solanki, V.M. Pathak, P.K. Jha, and V. Patel, Solution-processed uniform MoSe2–WSe2 heterojunction thin film on silicon substrate for superior and tunable photodetection. ACS Sustain. Chem. Eng. 8(12), 4809 (2020).

    Article  CAS  Google Scholar 

  19. A. Pon, A. Bhattacharyya, and R. Ramesh, Charge plasma-based phosphorene tunnel FET using a hybrid computational method. J. Electron. Mater. 50, 3624 (2021).

    Article  CAS  Google Scholar 

  20. P. Kumar, M. Gupta, K. Singh, and N. Kumar, Design and investigation of split-gate MoTe2-based FET as single transistor AND gate using nonequilibrium Green’s function. IEEE Trans. Electron Devices 67(11), 5221 (2020).

    Article  CAS  Google Scholar 

  21. Q. Li, J. Yang, Q. Li, S. Liu, L. Xu, C. Yang, L. Xu, Y. Li, X. Sun, J. Yang, and J. Lu, Sub-5 nm gate length monolayer MoTe2 transistors. J. Phys. Chem. C 125(35), 19394 (2021).

    Article  CAS  Google Scholar 

  22. A. Pon, A. Bhattacharyya, and R. Rathinam, Recent developments in black phosphorous transistors: a review. J. Electron. Mater. 50(11), 6020 (2021).

    Article  CAS  Google Scholar 

  23. R. Rathinam, A. Pon, S. Carmel, and A. Bhattacharyya, Analysis of black phosphorus double gate MOSFET using hybrid method for analogue/RF application. IET Circuits Devices Syst. 14(8), 1167 (2020).

    Article  Google Scholar 

  24. A. Pon, M. Ehteshamuddin, K. Sheelvardhan, and A. Dasgupta, Analysis of 1/f and G-R noise in phosphorene FETs. Solid State Electron. 200, 108530 (2023).

    Article  CAS  Google Scholar 

  25. J. Tao, An accurate MGGA-based hybrid exchange-correlation functional. J. Chem. Phys. 116(6), 2335 (2002).

    Article  CAS  Google Scholar 

  26. K. Xu, Y. Xu, H. Zhang, B. Peng, H. Shao, G. Ni, J. Li, M. Yao, H. Lu, H. Zhu, and C.M. Soukoulis, The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 20(48), 30351 (2018). https://doi.org/10.1039/C8CP05522J.

    Article  CAS  Google Scholar 

  27. S. Bhattacharyya and A.K. Singh, Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides. Phys. Rev. B 86(7), 075454 (2012).

    Article  Google Scholar 

  28. J. Joy, S. Nair, S.B. Pillai, K.D. Patel, G.K. Solanki, V.M. Pathak, and P.K. Jha, Quantitative analysis of temperature-dependent vibrational properties of Cobalt incorporated WSe2 ternary alloy. J. Solid State Chem. 314, 123359 (2022).

    Article  CAS  Google Scholar 

  29. K. Choudhary, K.F. Garrity, S.T. Hartman, G. Pilania, and F. Tavazza, Efficient computational design of two-dimensional van der Waals heterostructures: band alignment, lattice mismatch, and machine learning. Phys. Rev. Mater. 7(1), 014009 (2023).

    Article  CAS  Google Scholar 

  30. H.G. Kim and H.J. Choi, Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations. Phys. Rev. B 103(8), 085404 (2021).

    Article  CAS  Google Scholar 

  31. A. Ojha, and N.R. Mohapatra, A computationally efficient quantum-corrected Poisson solver for accurate device simulation of multi-gate FETs. Solid State Electron. 160, 107625 (2019).

    Article  CAS  Google Scholar 

  32. O. Penzin, L. Smith, A. Erlebach, M. Choi, and K.H. Lee, Kinetic velocity model to account for ballistic effects in the drift-diffusion transport approach. IEEE Trans. Electron Devices 64(11), 4599 (2017).

    Article  CAS  Google Scholar 

  33. N. Dhar, T.H. Chowdhury, M.A. Islam, N.A. Khan, M.J. Rashid, M.M. Alam, and N.J.C.L. Amin, Effect of n-type Transition metal dichalcogenide molybdenum telluride (N-MoTe2) in back contact interface of Cadmium Telluride solar cells from numerical analysis. Chalcogenide Lett. 11, 6 (2014).

    Google Scholar 

  34. Synopsys, T. C. A. D. Sentaurus Device Manual, Synopsys SDevice Ver. K-2015.06 (2015).

  35. B. Zhang, C. Hu, Y. **n, Y. Li, Y. **e, Q. **ng, and C. Wang, Analysis of low-frequency 1/f noise characteristics for MoTe2 ambipolar field-effect transistors. Nanomaterials 12(8), 1325 (2022).

    Article  CAS  Google Scholar 

  36. H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, and J. Appenzeller, Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 12 (2015).

    Article  Google Scholar 

  37. F.N. Hooge, 1/ƒ noise is no surface effect. Phys. Lett. A 29(3), 139 (1969).

    Article  Google Scholar 

  38. F. Danneville, G. Dambrine, H. Happy, P. Tadyszal, and A. Cappy, Influence of the gate leakage current on the noise performance of MESFET’s and MODFETs. Solid State Electron. 38, 1081 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by a Department of Science and Technology (DST) Core Research Grant (CRG/2020/004241). The author Ramesh R. has received research support from DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, M.M., Ramesh, R. Performance Analysis of MoTe2/MoSe2 and MoTe2/WSe2 Heterostructure Double-Gate MOSFET. J. Electron. Mater. 52, 7694–7707 (2023). https://doi.org/10.1007/s11664-023-10696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10696-0

Keywords

Navigation