Log in

Broadband, Polarization-Insensitive and Ultra-Thin Metasurface-Based Radar-Absorbing Structure for Radar Cross-Section Reduction of Planar/Conformal Hotspots

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this article, a broadband, polarization-independent and ultra-thin radar-absorbing structure (RAS) is proposed for the radar cross-section reduction (RCSR) of both planar and conformal scattering hotspots. The absorption characteristics and radar cross-section (RCS) performance of the novel metasurface-based RAS are analyzed in detail for both TE and TM polarization over a wide range of incident angles. The equivalent circuit model corresponding to the proposed unit cell is included as well. Further, the novel ultra-thin RAS (thickness of 0.043λ at the lowest operating frequency) was fabricated using a flexible substrate in both planar and conformal configurations, and the periodic pattern remained intact (without delamination) when applied over conformal geometries. The measurement results show that the percentage of power absorbed by the proposed structures (both planar and conformal) is greater than 80% in the frequency range of 8.2–12.2 GHz for both polarizations even at oblique angles of incidence. In addition, they provide more than 10 dB RCSR in comparison with their metallic counterparts of identical dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Skolnik, Radar Handbook, 2nd ed., (New York: McGraw-Hill, 2008).

    Google Scholar 

  2. H. Singh, D.D.J. Ebison, H.S. Rawat, and R. George, Fundamentals of EM Design of Radar Absorbing Structures (RAS), 1st ed., (Singapore: Springer, 2017).

    Google Scholar 

  3. J.-H. Oh, K.-S. Oh, C.-G. Kim, and C.-S. Hong, Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos. B Eng. 35, 49 (2004).

    Article  Google Scholar 

  4. S.-H. Chen, W.-S. Kuo, and R.-B. Yang, Microwave absorbing properties of a radar absorbing structure composed of carbon nanotube papers/glass fabric composites. Int. J. Appl. Ceram. Technol. 16, 2065 (2019).

    Article  CAS  Google Scholar 

  5. N. Gill, J. Singh, S. Puthucheri, and D. Singh, Thin and broadband two-layer microwave absorber in 4–12 GHz with developed flaky Cobalt material. Electron. Mater. Lett. 14, 288 (2018).

    Article  CAS  Google Scholar 

  6. T. Deng, Z.-W. Li, and Z.N. Chen, Ultrathin broadband absorber using frequency-selective surface and frequency-dispersive magnetic materials. IEEE Trans. Antennas Propag. 65, 5886 (2017).

    Article  Google Scholar 

  7. F. Costa, A. Monorchio, and G. Manara, Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 58, 1551 (2010).

    Article  Google Scholar 

  8. L. Sun, H. Cheng, Y. Zhou, and J. Wang, Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 20, 4675 (2012).

    Article  Google Scholar 

  9. Y.-Z. Cheng, Y. Nie, and R.-Z. Gong, Design of a wide-band metamaterial absorber based on fractal frequency selective surface and resistive films. Phys. Scr. 88, 045703 (2013).

    Article  CAS  Google Scholar 

  10. X. Lu, J. Chen, Y. Huang, Z. Wu, and A. Zhang, Design of ultra-wideband and transparent absorber based on resistive films. Appl. Comput. Electromagn. Soc. J. 34, 765 (2019).

    Google Scholar 

  11. Y. Shang, Z. Shen, and S. **ao, On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag. 61, 6022 (2013).

    Article  Google Scholar 

  12. A.P. Sohrab and Z. Atlasbaf, A circuit analog absorber with optimum thickness and response in X-Band. IEEE Antennas Wirel. Propag. Lett. 12, 276 (2013).

    Article  Google Scholar 

  13. A. Parameswaran, A.A. Ovhal, D. Kundu, H.S. Sonalikar, J. Singh, and D. Singh, A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes. IEEE Trans. Electromagn. Compat. 64, 1758 (2022).

    Article  Google Scholar 

  14. F. Ding, Y. Cui, X. Ge, Y. **, and S. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012).

    Article  Google Scholar 

  15. A. Dileep, P.V. Abhilash, V. Joy, H. Singh, and R.U. Nair, Metamaterial Absorber Based on Minkowski Fractal Patch for Stealth Applications. in IEEE CONECCT (2020).

  16. M. Yoo and S. Lim, Polarization-independent and ultra-wideband metamaterial absorber using a hexagonal artificial impedance surface and a resistance-capacitor layer. IEEE Trans. Antennas Propag. 62, 2652 (2014).

    Article  Google Scholar 

  17. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K.V. Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115, 104503 (2014).

    Article  Google Scholar 

  18. S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, Wide-angle broadband microwave metamaterial absorber with octave bandwidth. IET Microw. Antennas Propag. 9, 1160 (2015).

    Article  Google Scholar 

  19. Q. Lv, C. **, B. Zhang, P. Zhang, J. Wang, N. Kang, and B. Tian, Wideband dual-polarized microwave absorber at extremely oblique incidence. IEEE Trans. Antennas Propag. 71, 2497 (2023).

    Article  Google Scholar 

  20. Z. Sun, L. Yan, X. Zhao, and R.X.-K. Gao, An ultrawideband frequency selective surface absorber with high polarization-independent angular stability. IEEE Antennas Wirel. Propag. Lett. 22, 789 (2023).

    Article  Google Scholar 

  21. K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, and P. Uhd Jepsen, Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt. Express 20, 635 (2012).

    Article  CAS  Google Scholar 

  22. Y. Jang, M. Yoo, and S. Lim, Conformal metamaterial absorber for curved surface. Opt. Express 21, 24163 (2013).

    Article  CAS  Google Scholar 

  23. Z. Huang, Y. Li, Q. Cao, Y. Zhao, Z. Cao, S. Guo, L. Miao, and J. Jiang, Partition layout loading of frequency selective surface absorbers on the curved surfaces for the significant RCS reduction. IEEE Trans. Microw. Theory Tech. 70, 2948 (2022).

    Article  Google Scholar 

  24. N. Hakla, S. Ghosh, K.V. Srivastava, and A. Shukla, in Proc. URSI International Symposium on Electromagnetic Theory (2016), p. 771.

  25. W.-H. Choi, J.-H. Shin, T.-H. Song, J.-B. Kim, C.-M. Cho, W.-J. Lee, and C.-G. Kim, Design of circuit-analog (CA) absorber and application to the leading edge of a wing-shaped structure. IEEE Trans. Electromagn. Compat. 56, 599 (2014).

    Article  Google Scholar 

  26. A. Dhumal, M.S. Bisht, A. Bhardwaj, M. Saikia, S. Malik, and K.V. Srivastava, Screen printed polarization independent microwave absorber for wideband RCS reduction. IEEE Trans. Electromagn. Compat. 65, 96 (2023).

    Article  Google Scholar 

  27. C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, and T. Cui, Transparently curved metamaterial with broadband millimeter wave absorptions. Photonics Res. 7, 478 (2019).

    Article  Google Scholar 

  28. V. Joy, A. Dileep, P.V. Abhilash, R.U. Nair, and H. Singh, Metasurfaces for stealth applications: a comprehensive review. J. Electron. Mater. 50, 3129 (2021).

    Article  CAS  Google Scholar 

  29. S. Ghosh and K.V. Srivastava, An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas Wirel. Propag. Lett. 14, 511 (2015).

    Article  Google Scholar 

  30. M.M. Tirkey and N. Gupta, Broadband polarization-insensitive inkjet-printed conformal metamaterial absorber. IEEE Trans. Electromagn. Compat. 63, 1829 (2021).

    Article  Google Scholar 

  31. S. Ghosh, S. Bhattacharyya, D. Chaurasiya, and K.V. Srivastava, An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas Wirel. Propag. Lett. 14, 1172 (2015).

    Article  Google Scholar 

  32. S. Ghosh, S. Bhattacharyya, and K.V. Srivastava, Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 56, 350 (2014).

    Article  Google Scholar 

  33. M. Yoo, H.K. Kim, and S. Lim, Angular and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology. IEEE Antennas Wirel. Propag. Lett. 15, 414 (2016).

    Article  Google Scholar 

  34. T.T. Nguyen and S. Lim, Bandwidth-enhanced and wide-angle-of incidence metamaterial absorber using a hybrid unit cell. Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the Directorate of Extramural Research & Intellectual Property Rights, Defence Research and Development Organization (DRDO), India for supporting the work and Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO, Kanpur for supporting measurements. The photographs of measurement setups included in the paper have been provided by DMSRDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineetha Joy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, V., Baghel, S., Nazeer, S.T. et al. Broadband, Polarization-Insensitive and Ultra-Thin Metasurface-Based Radar-Absorbing Structure for Radar Cross-Section Reduction of Planar/Conformal Hotspots. J. Electron. Mater. 52, 6625–6636 (2023). https://doi.org/10.1007/s11664-023-10574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10574-9

Keywords

Navigation