Log in

Controllable Synthesis of High-Quality Hexagonal Boron Nitride Films on Ni-B Alloy

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As an ideal dielectric substrate and protective packaging material for two-dimensional (2D) materials, high-quality hexagonal boron nitride (h-BN) films have attracted much attention. Previous studies have achieved high-quality h-BN on a Ni substrate due to its catalytic activity and B solubility. In this paper, a Ni-B alloy was utilized as a catalytic substrate and B source in the h-BN growth procedure. The growth of h-BN on a sapphire surface was achieved by a two-step growth–transfer method. The thickness of h-BN thin films is controlled by changing the growth time. Raman spectra show that the full width at half-maximum of E2g mode is 8.91 cm−1, which is much lower than most other chemical vapor deposition-grown h-BN. This provides a method for preparing high-quality h-BN and other layered 2D materials on an insulating substrate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Z. Shi, X. Wang, Q. Li, P. Yang, G. Lu, R. Jiang, H. Wang, C. Zhang, C. Cong, Z. Liu, T. Wu, H. Wang, Q. Yu, and X. **e, Vapor-liquid-solid growth of large-area multi-layer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    Article  CAS  Google Scholar 

  2. T. Knobloch, Y. Illarionov, F. Ducry, C. Schleich, S. Wachter, K. Watanabe, T. Taniguchi, T. Mueller, M. Waltl, and M. Lanza, The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98 (2021).

    Article  CAS  Google Scholar 

  3. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, and C.R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342, 614 (2013).

    Article  CAS  Google Scholar 

  4. D.K. Bediako, M. Rezaee, H. Yoo, D.T. Larson, S.F. Zhao, T. Taniguchi, K. Watanabe, T.L. Brower-Thomas, E. Kaxiras, and P. Kim, Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425 (2018).

    Article  CAS  Google Scholar 

  5. L. Li, F. Yang, G. Ye, Z. Zhang, Z. Zhu, W. Lou, X. Zhou, K. Watanabe, T. Taniguchi, K. Chang, Y. Wang, X. Chen, and Y. Zhang, Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593 (2016).

    Article  CAS  Google Scholar 

  6. K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two-dimensional hexagonal boron nitride (2D-h-BN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992 (2017).

    Article  CAS  Google Scholar 

  7. R.V. Gorbachev, I. Riaz, R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, and P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465 (2011).

    Article  CAS  Google Scholar 

  8. K. Watanabe, T. Taniguchi, and H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404 (2004).

    Article  CAS  Google Scholar 

  9. S.M. Kim, A.P. Hsu, H.C. Min, H.Y. Sang, S.J. Yun, J.S. Lee, D.F. Cho, W.L. Fang, M. Dresselhaus, K.K. Kim, Y.H. Lee, J. Kong, and T. Palacios, Synthesis of large-area multi-layer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    Article  CAS  Google Scholar 

  10. G. Lu, T. Wu, Q. Yuan, H. Wang, F. Ding, X. **e, and M. Jiang, Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 6, 6160 (2015).

    Article  CAS  Google Scholar 

  11. S. Couldeva, R.S. Weatherup, C. Bayer, R. Blume, A. Cabrero, P. Weimer, M.B. Martin, R. Wang, C. Baehtz, R. Schloegl, J.C. Meyer, and S. Hofmann, Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD. Nano Lett. 16, 1250 (2016).

    Article  Google Scholar 

  12. Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M.S. Dresselhaus, L. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134 (2010).

    Article  CAS  Google Scholar 

  13. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. **, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobso, and P.M. Ajayan, Large-scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209 (2010).

    Article  CAS  Google Scholar 

  14. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez, M. Dresselhaus, T. Palacios, and J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161 (2012).

    Article  Google Scholar 

  15. J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao, Z. Liang, D. Ding, H. Hong, P. Zheng, Z. Zhang, and Z. Zhang, Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33 (2022).

    Article  CAS  Google Scholar 

  16. Y. Uchida, S. Nakandakari, K. Kawahara, S. Yamasaki, M. Mitsuhara, and H. Ago, Controlled growth of large-area uniform multi-layer hexagonal boron nitride as an effective 2D substrate. ACS Nano 12, 6236 (2018).

    Article  CAS  Google Scholar 

  17. J.S. Lee, S. Choi, S.J. Yun, Y.I. Kim, S. Boandoh, J. Park, B.G. Shin, H. Ko, S.H. Lee, Y. Kim, Y.H. Lee, K.K. Kim, and S.M. Kim, Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817 (2018).

    Article  CAS  Google Scholar 

  18. V. Babenko, G. Lane, A.A. Koós, A.T. Murdock, K. So, J. Britton, S.S. Meysami, J.G. Moffat, and N. Grobert, Time-dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Sci. Rep. 7, 14297 (2017).

    Article  Google Scholar 

  19. C. Wu, A.M. Soomro, F. Sun, H. Wang, Y. Huang, J. Wu, C. Liu, X. Yang, N. Gao, X. Chen, J. Kang, and D. Cai, Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer. Sci. Rep. 6, 34766 (2016).

    Article  CAS  Google Scholar 

  20. A.M. Berhane, K.Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N.Y. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, Bright room-temperature single-photon emission from defects in gallium nitride. Adv. Mater. 29, 1605092 (2017).

    Article  Google Scholar 

  21. T.C. Doan, J. Li, J.Y. Lin, and H.X. Jiang, Growth and device processing of hexagonal boron nitride epilayers for thermal neutron and deep ultraviolet detectors. AIP Adv. 6, 075213 (2016).

    Article  Google Scholar 

  22. T.K. Paul, P. Bhattacharya, and D.N. Bose, Characterization of pulsed laser deposited boron nitride thin films on InP. Appl. Phys. Lett. 56, 2648 (1990).

    Article  CAS  Google Scholar 

  23. H. Chou, S. Majumder, A. Roy, M. Catalano, P. Zhuang, L. Colombo, and S. Banerjee, Dependence of h-BN film thickness as grown on nickel single-crystal substrates of different orientations. ACS Appl. Mater. Interfaces 10, 44862 (2018).

    Article  CAS  Google Scholar 

  24. S. Wang, X. Wang, and J. Warner, All chemical vapor deposition growth of MoS2:h-BN vertical van der waals heterostructures. ACS Nano 9, 5246 (2015).

    Article  CAS  Google Scholar 

  25. H.X. Jiang, and J.Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond. Sci. Technol. 29, 084003 (2014).

    Article  CAS  Google Scholar 

  26. A.R. Jang, S. Hong, C. Hyun, S.I. Yoon, G. Kim, H.Y. Jeong, T.J. Shin, S. Park, K. Wong, S. Kwak, and N. Park, Wafer-scale and wrinkle-free epitaxial growth of single orientated multi-layer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360 (2016).

    Article  CAS  Google Scholar 

  27. Q. Li, Q. Wu, J. Gao, T. Wei, J. Sun, H. Hong, Z. Dou, Z. Zhang, R. Mark, P. Gao, J. Yan, J. Wang, J. Li, Y. Zhang, Z. Liu, and Z. Liu, Direct growth of 5 in uniform hexagonal boron nitride on glass for high-performance deep-ultraviolet light-emitting diodes. Adv. Mater. Interfaces 5, 1800662 (2018).

    Article  Google Scholar 

  28. R.Y. Tay, S.H. Tsang, M. Loeblein, W.L. Chow, G.C. Loh, J.W. Toh, S.T. Ang, and E.H. Teo, Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl. Phys. Lett. 106, 101901 (2015).

    Article  Google Scholar 

  29. L. Battezzati, C. Antonione, and M. Baricco, Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams. J. Alloys Compd. 247, 164 (1997).

    Article  CAS  Google Scholar 

  30. L. Chien, C. Chiang, and C. Lao, Boron carbon oxynitride as a novel metal-free photocatalyst. Nanoscale Res. Lett. 16, 176 (2021).

    Article  CAS  Google Scholar 

  31. S. Kim, A. Hsu, and M. Park, Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been financially supported by the National Natural Science Foundation of China (61774084), the special fund of Jiangsu province for the transformation of scientific and technological achievements (BA2022204), the Special Scientific Innovation Found of Sihong County (H201901), and the double carbon special fund of Jiangsu province (BE2022005). The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017281), the Science and Technology Commission of Shanghai Municipality (20501130200 and 2021-cyxt1-kj03), the National Natural Science Foundation of China (62174169).

Author information

Authors and Affiliations

Authors

Contributions

BL: Conceptualization, Formal analysis, Investigation, Methodology, Writing—original draft. HS: Funding acquisition, review & editing, Project administration. BL: Investigation. WM: Methodology. ZW: Validation. JZ: Validation. WM: Validation. YL: Methodology. TW: Funding acquisition, Supervision, review & editing.

Corresponding authors

Correspondence to Honglie shen or Tianru Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., shen, H., Liu, B. et al. Controllable Synthesis of High-Quality Hexagonal Boron Nitride Films on Ni-B Alloy. J. Electron. Mater. 52, 4913–4920 (2023). https://doi.org/10.1007/s11664-023-10433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10433-7

Keywords

Navigation