Log in

Dual-Mode Metamaterial Absorber for Independent Sweat and Temperature Sensing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metamaterial absorbers are increasingly studied and applied in sensing, telemedicine, and health monitoring applications. At present, many reported metamaterial-based sensors often exhibit the characteristics of single or multiple resonance modes. However, the sensing characteristics of these multi-mode metamaterial sensors are not independent. Here, a multi-mode metamaterial sensor (localized surface plasmon (LSP) resonance mode, dielectric loss mode) is measured and analyzed. In measurements, absorption peak P1 is sensitive to the thickness of the dielectric layer, while the absorption peak P2 is associated with lattice constant. The metamaterial sensor exhibits dual sensing capabilities for both temperature and sweat. When the metamaterial sensor is covered with sweat (the temperature remains unchanged), peak P2 is strengthened and moved to the low-frequency region, while peak P1 is basically unchanged. When the temperature is increased (the metamaterial sample is not covered by sweat), peak P1 is strengthened and moved to the low-frequency region, while peak P2 is basically unchanged. When the concentration components in sweat and temperature are increased synchronously, peaks P1 and P2 are increased simultaneously. Peak P1 is moved to the high-frequency region, while peak P2 is shifted to the low-frequency region. This proposed metamaterial sensor shows both independent and dual sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Engheta, Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698 (2007).

    Article  CAS  Google Scholar 

  2. D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788 (2004).

    Article  CAS  Google Scholar 

  3. W. Cai and V.M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Cham: Springer, 2009).

    Google Scholar 

  4. L.L. Huang, X.Z. Chen, H. Mühlenbernd, H. Zhang, S.M. Chen, B.F. Bai, Q.F. Tan, G.F. **, K.W. Cheah, C.W. Qiu, J.S. Li, T. Zentgraf, and S. Zhang, Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    Article  Google Scholar 

  5. X. Ni, A.V. Kildishev, and V.M. Shalaev, Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Article  Google Scholar 

  6. K. Huang, Z.G. Dong, S.T. Mei, L. Zhang, Y.J. Liu, H. Liu, H.B. Zhu, J.H. Teng, B. Luk’yanchuk, J.K.W. Yang, and C.W. Qiu, Silicon multi-meta-holograms for the broadband visible light. Laser Photon. Rev. 10, 500 (2016).

    Article  CAS  Google Scholar 

  7. S. Larouche, Y.J. Tsai, T. Tyler, N.M. Jokerst, and D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450 (2012).

    Article  CAS  Google Scholar 

  8. N.F. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).

    Article  CAS  Google Scholar 

  9. S.L. Sun, K.Y. Yang, C.M. Wang, T.K. Juan, W.T. Chen, C.Y. Liao, Q. He, S.Y. **ao, W.T. Kung, G.Y. Guo, L. Zhou, and D.P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223 (2012).

    Article  CAS  Google Scholar 

  10. Z.Y. Wei, Y. Cao, X.P. Su, Z.J. Gong, Y. Long, and H.Q. Li, Highly efficient beam steering with a transparent metasurface. Opt. Express 21, 10739 (2013).

    Article  Google Scholar 

  11. C. Pfeiffer and A. Grbic, Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

    Article  Google Scholar 

  12. J.B. Pendry, D. Schurig, and D.R. Smith, Controlling electromagnetic fields. Science 312, 1780 (2006).

    Article  CAS  Google Scholar 

  13. M. Fridman, A. Farsi, Y. Okawachi, and A.L. Gaeta, Demonstration of temporal cloaking. Nature 481, 62 (2012).

    Article  CAS  Google Scholar 

  14. N.F. Yu, P. Genevet, M. Kats, and F. Aieta, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).

    Article  CAS  Google Scholar 

  15. N. Yu and F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13, 139 (2014).

    Article  CAS  Google Scholar 

  16. H. Wakatsuchi and C. Christopoulos, Generalized scattering control using cut-wire-based metamaterials. Appl. Phys. Lett. 98, 221105 (2011).

    Article  Google Scholar 

  17. R.W. Ziolkowski, P. **, and C.-C. Lin, Metamaterial-inspired engineering of antennas. Proc. IEEE 99, 1720 (2011).

    Article  Google Scholar 

  18. H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, Customised broadband metamaterial absorbers for arbitrary polarisation. Opt. Express 18, 22187 (2010).

    Article  CAS  Google Scholar 

  19. H. Wakatsuchi, J. Paul, and C. Christopoulos, Performance of customizable cut-wire-based metamaterial absorbers: absorbing mechanism and experimental demonstration. IEEE Trans. Antennas Propag. 60, 5743 (2012).

    Article  Google Scholar 

  20. S. Kang, Z.Y. Qian, V. Rajaram, A. Alu, and M. Rinaldi, Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems, in International Conference on Solid State Sensors Actuators and Microsystems, (Seoul, South Korea, 2005), pp. 886

  21. H.J. Leea and J.G. Yook, Biosensing using split-ring resonators at microwave regime. Appl. Phys. Lett. 92, 254103 (2018).

    Article  Google Scholar 

  22. S.B. Mbareka, S. Euphrasiea, T. Barona, L. Thiery, P.L. Vairac, B. Cretin, J.P. Guillet, and L. Chusseau, Room temperature thermophile THz sensor. Sens. Actuators A 193, 155 (2013).

    Article  Google Scholar 

  23. Y. Shen, J.H. Zhou, T.R. Liu, and Y.T. Tao, Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 4, 2381 (2013).

    Article  Google Scholar 

  24. C.L. Gomez-Heredia, J.A. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I.J. Tadeo, J.L. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A.M. Umarji, J. Drevillon, K. Joulain, Y. Ezzahri, and J.J. Alvarado-Gi, Measurement of the hysteretic thermal properties of W-doped and undoped nanocrystalline powders of VO2. Sci. Rep. 9, 14687 (2019).

    Article  CAS  Google Scholar 

  25. G.G. Zheng, P. Zhou, and Y.Y. Chen, Dynamically switchable dual-band mid-infrared absorber with phase-change material Ge2Sb2Te5. Opt. Mater. 99, 109581 (2020).

    Article  CAS  Google Scholar 

  26. J. Kim, A.S. Campbell, B.E.F. de Avila, and J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389 (2019).

    Article  CAS  Google Scholar 

  27. A.J. Bandodkar, and J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363 (2014).

    Article  CAS  Google Scholar 

  28. Y. Lin, M. Bariya, and A. Jawey, Wearable biosensors for body computing. Adv. Funct. Mater. 31(39), 2008087 (2020).

    Article  Google Scholar 

  29. Y.R. Yang, and W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465 (2019).

    Article  CAS  Google Scholar 

  30. B.W. Zhong, K. Jiang, L.L. Wang, and G.Z. Shen, Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, 2103257 (2021).

    Article  Google Scholar 

  31. F. Poletti, B. Zanfrognini, L. Favaretto, V. Quintano, J. Sun, E. Treossi, M. Melucci, V. Palermo, and C. Zanardi, Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B 344, 130253 (2021).

    Article  CAS  Google Scholar 

  32. J. Choi, R. Ghaffari, L.B. Baker, and J.A. Rogers, Skin-interfaced systems for sweat collection and analytics. Adv. Sci. 4(2), 3921 (2018).

    Article  Google Scholar 

  33. H.Y. Nyein, M. Bariya, B. Tran, C.H. Ahn, B.J. Brown, W. Ji, N. Davis, and A. Javey, A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12(1), 1823 (2021).

    Article  CAS  Google Scholar 

  34. J. Chen, H.J. Zhang, G.Q. Liu, J.S. Liu, Y. Liu, L. Tang, and Z.Q. Liu, High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279 (2019).

    Article  CAS  Google Scholar 

  35. Y.F. Zhang, and M. Cui, Refractive index sensor based on the symmetric MIM waveguide structure. J. Electron. Mater. 48, 1005 (2019).

    Article  CAS  Google Scholar 

  36. Y. Khannal, and Y.K. Awasthi, Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator. J. Electron. Mater. 49, 385 (2020).

    Article  Google Scholar 

  37. M. Bazgir, M. Jalalpour, F.B.B. Zarrabi, and A.S. Arezoomand, J. Electr. Mater. 49, 2173 (2020).

    Article  CAS  Google Scholar 

  38. F. Chen, H.F. Zhang, L.H. Sun, J.J. Li, and C.C. Yu, Temperature tunable fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293 (2019).

    Article  CAS  Google Scholar 

  39. M.A. Baqir, A. Farmani, T. Fatima, M.R. Raza, S.F. Shaukat, and A. Mir, Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 57, 1 (2018).

    Article  Google Scholar 

  40. A. Farmania, A. Mira, M. Bazgirb, and F.B. Zarrabi, Highly sensitive nano-scale plasmonic biosensor utilizing fano resonance metasurface in THz range: numerical study. Physica E 104, 233 (2018).

    Article  Google Scholar 

  41. M.R. Rakhshani, and M.A. Mansouri-Birjandi, High sensitivity plasmonic refractive index sensing and its application for human blood group identifification. Sens. Actuators B 249, 168 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Doctor’s Scientific Research Foundation (No. HZUBS201503), the Young and Middle Teachers’ Basic Ability Improvement Project of Guangxi (No. KY2016YB453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhong, M., Zang, L. et al. Dual-Mode Metamaterial Absorber for Independent Sweat and Temperature Sensing. J. Electron. Mater. 52, 4106–4116 (2023). https://doi.org/10.1007/s11664-023-10388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10388-9

Keywords

Navigation