Log in

Trench-Filling Epitaxy of Germanium on (001) Silicon Enhanced Using [100]-Oriented Patterns

  • Topical Collection: 19th Conference on Defects (DRIP XIX)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper reports trench-filling epitaxy of Ge on (001) Si using [100]-oriented patterns, which is effective to fill the micron-deep trench in a short growth time. As a starting substrate, a trench with a width of about 0.6 µm and a depth of about 1.0 µm is prepared on a (001) Si wafer. The trench is aligned in the [100] direction, which deviates by 45° from the ordinary [110] direction. A Ge epitaxial film is selectively grown inside the trench by ultrahigh-vacuum chemical vapor deposition in a molecular flux regime. The mean free path of the GeH4 source gas is orders of magnitude longer than the trench depth of 1.0 µm, sufficiently supplying GeH4 in the trench. By aligning the trench in the [100] direction, Ge growth occurs not only on the trench bottom, but also on the {010} trench sidewalls. Despite the growth thickness of 0.5 µm on the flat (001) Si surface, the 1.0-µm-deep trench is fully filled with Ge, thanks to the growth on the sidewalls. For near-infrared photodetector applications, the tensile lattice strain due to the thermal expansion mismatch between Ge and Si is theoretically discussed in such a trench-filling structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Michel, J. Liu, and L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527–534 (2010).

    Article  CAS  Google Scholar 

  2. G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L.C. Kimerling, High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration. IEEE Trans. Electron. Devices 48, 1092 (2001).

    Article  CAS  Google Scholar 

  3. Y. Ishikawa, K. Wada, D.D. Cannon, J. Liu, H.-C. Luan, and L.C. Kimerling, Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett. 82, 2044 (2003).

    Article  CAS  Google Scholar 

  4. J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D.D. Cannon, S. Jongthanmmanurak, D.T. Danielson, L.C. Kimerling, J. Chen, F. Ömer Ilday, F.X. Kärtner, and J. Yasaitis, High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).

    Article  Google Scholar 

  5. Y. Ishikawa, K. Wada, D.D. Cannon, J. Liu, H.-C. Luan, J. Michel, and L.C. Kimerling, Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J. Appl. Phys. 98, 013501 (2005).

    Article  Google Scholar 

  6. M. Jutzi, M. Berroth, G. Wöhl, M. Oehme, and E. Kasper, Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photon. Technol. Lett. 17, 1510 (2005).

    Article  CAS  Google Scholar 

  7. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L.C. Kimerling, and J. Michel, High performance, waveguide integrated Ge photodetectors. Opt. Express 15, 3916 (2007).

    Article  CAS  Google Scholar 

  8. T. Yin, R. Cohen, M.M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M.J. Paniccia, 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15, 13965 (2007).

    Article  CAS  Google Scholar 

  9. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, 42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 17, 6252 (2009).

    Article  CAS  Google Scholar 

  10. K.-W. Ang, T.Y. Liow, M.B. Yu, Q. Fang, J. Song, G.Q. Lo, and D.L. Kwong, Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform. IEEE J. Sel. Top. Quantum Electron. 16, 106 (2010).

    Article  CAS  Google Scholar 

  11. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J.E. Cunningham, A.V. Krishnamoorthy, and M. Asghari, Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides. Opt. Express 18, 96 (2010).

    Article  CAS  Google Scholar 

  12. S. Park, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, K. Yamada, Y. Ishikawa, K. Wada, and S. Itabashi, Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators. Opt. Express 18, 8412 (2010).

    Article  CAS  Google Scholar 

  13. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J.E. Cunningham, and A.V. Krishnamoorthy, Improving CMOS-compatible germanium photodetectors. Opt. Express 20, 26345 (2012).

    Article  CAS  Google Scholar 

  14. H. Nishi, T. Tsuchizawa, R. Kou, H. Shinojima, T. Yamada, H. Kimura, Y. Ishikawa, K. Wada, and K. Yamada, Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver. Opt. Express 20, 9312 (2012).

    Article  Google Scholar 

  15. T. Hiraki, H. Nishi, T. Tsuchizawa, R. Kou, H. Fukuda, K. Takeda, Y. Ishikawa, K. Wada, and K. Yamada, Si-Ge-silica monolithic integration platform and its application to a 22-Gb/s×16-ch WDM receiver. IEEE Photon. J. 5, 4500407 (2013).

    Article  Google Scholar 

  16. K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, High-performance silicon photonics technology for telecommunications applications. Sci. Technol. Adv. Mater. 15, 024603 (2014).

    Article  CAS  Google Scholar 

  17. C.G. Littlejohns, Y. Hu, F.Y. Gardes, D.J. Thomson, S.A. Reynolds, G.Z. Mashanovich, and G.T. Reed, 50 Gb/s silicon photonics receiver with low insertion loss. IEEE Photon. Technol. Lett. 26, 714 (2014).

    Article  CAS  Google Scholar 

  18. K. Ito, T. Hiraki, T. Tsuchizawa, and Y. Ishikawa, Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers. Jpn. J. Appl. Phys. 56, 04CH05 (2017).

    Article  Google Scholar 

  19. H. Chen, M. Galili, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, L. Oxenlowe, J. Van Campenhout, and G. Roelkens, 100 Gbps RZ Data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Lightwave Technol. 35, 722 (2017).

    Article  CAS  Google Scholar 

  20. T. Tani, T. Okumura, K. Oda, M. Deura, and T. Ido, On-chip optical interconnection using integrated germanium light emitters and photodetectors. Opt. Express 29, 28021 (2021).

    Article  CAS  Google Scholar 

  21. S. Lischke, A. Peczek, J.S. Morgan, K. Sun, D. Steckler, Y. Yamamoto, F. Korndörfer, C. Mai, S. Marschmeyer, A. Krüger, A. Beling, and L. Zimmermann, Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photon. 15, 925 (2021).

    Article  CAS  Google Scholar 

  22. S. Sonoi, R. Katamawari, M. Shimokawa, K. Inaba, J.A. Piedra-Lorenzana, T. Hizawa, J. Fujikata, and Y. Ishikawa, Direct bandgap control by narrowing the germanium strip structure on Silicon for C+L band photonic devices. IEEE J. Quantum Electron. 58, 8400209 (2022).

    Article  CAS  Google Scholar 

  23. L. Colace, G. Masini, S. Cozza, and G. Assanto, Near-infrared camera in polycrystalline germanium integrated on complementary-metal-oxide semiconductor electronics. Appl. Phys. Lett. 90, 011103 (2007).

    Article  Google Scholar 

  24. R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Kanel, Near infrared image sensor with integrated germanium photodiodes. J. Appl. Phys. 110, 023107 (2011).

    Article  Google Scholar 

  25. M. Oehme, M. Kaschel, S. Epple, M. Wanitzek, Z. Yu, D. Schwarz, A.-C. Köllner, J.N. Burghartz, and J. Schulze, Backside illuminated “Ge-on-Si” NIR camera. IEEE Sensors J. 21, 18696 (2021).

    Article  CAS  Google Scholar 

  26. N. Na, S.-L. Cheng, H.-D. Liu, M.-J. Yang, C.-Y. Chen, H.-W. Chen, Y.-T. Chou, C.-T. Lin, W.-H. Liu, C.-F. Liang, C.-L. Chen, S.-W. Chu, B.-J. Chen, Y.-F. Lyu, and S.-L. Chen, High-performance germanium-on-silicon lock-in pixels for indirect time-of-flight applications. IEEE Int. Conf. Electron Devices (IEDM) Tech. Digest, 751 (2018)

  27. K. Kuzumentko, P. Vines, A. Halimi, R.J. Collins, A. Maccarone, A. Mcarthy, Z.M. Greener, J. Kirdoda, D.C.S. Dumas, L.F. Llin, M.M. Mirza, R.W. Millar, D.J. Paul, and G.S. Buller, 3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors. Opt. Express 28, 1330 (2020).

    Article  Google Scholar 

  28. Y. Ishikawa and K. Wada, Near-infrared Ge photodiodes for Si photonics: operation frequency and an approach for the future. IEEE Photon. J. 2, 306 (2010).

    Article  Google Scholar 

  29. O.I. Dosunmu, D.D. Cannon, M.K. Emsley, B. Ghyselen, J. Liu, L.C. Kimerling, and M.S. Ünlü, Resonant cavity enhanced Ge photodetectors for 1550 nm operation reflective Si substrates. IEEE J. Quantum Electron. 10, 696 (2004).

    Google Scholar 

  30. B.S. Meyerson, Low-temperature Si and Si: Ge epitaxy by ultrahigh-vacuum/chemical vapor deposition: process fundamentals. IBM J. Res. Dev. 34, 132 (2000).

    Article  Google Scholar 

  31. J.M. Hartmann, A.M. Papon, V. Destefanis, and T. Billon, Reduced pressure chemical vapor deposition of Ge thick layers on Si(001), Si(011) and Si(111). J. Cryst. Growth 310, 5287 (2008).

    Article  CAS  Google Scholar 

  32. M.F.B. Amin, K. Motomura, T. Hizawa, J.A. Piedra-Lorenzana, T. Nakai, and Y. Ishikawa, Reduced threading dislocation density in a germanium epitaxial film coalesced on an arrayed silicon-on-insulator strip. Jpn. J. Appl. Phys. 61, 095506 (2022).

    Article  Google Scholar 

  33. Y. Ishikawa and K. Wada, Germanium for silicon photonics. Thin Solid Films 518, S83 (2010).

    Article  CAS  Google Scholar 

  34. M. Yako, Y. Ishikawa, E. Abe, and K. Wada, Defects and their reduction in Ge selective epitaxy and coalescence layer on Si with semicylindrical voids on SiO2 masks. IEEE J. Sel. Top. Quantum Electron. 24, 8201007 (2018).

    Google Scholar 

  35. M. Yako, Y. Ishikawa, and K. Wada, Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: theoretical prediction and experimental verification. J. Appl. Phys. 123, 185304 (2018).

    Article  Google Scholar 

  36. K. Noguchi, M. Nishimura, Y. Tsusaka, J. Matsui, and Y. Ishikawa, Enhancement of L-band optical absorption in strained epitaxial Ge on Si-on-quartz wafer: toward extended Ge photodetectors. J. Appl. Phys. 128, 133107 (2020).

    Article  CAS  Google Scholar 

  37. R. Katamawari, K. Kawashita, T. Hizawa, and Y. Ishikawa, Si-cap**-induced surface roughening on the strip structures of Ge selectively grown on an Si substrate. J. Vac. Sci. Technol. B 39, 042204 (2021).

    Article  CAS  Google Scholar 

  38. H.C. Luan, D.R. Lim, K.K. Lee, K.M. Chen, J.G. Sandland, K. Wada, and L.C. Kimerling, High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909 (1999).

    Article  CAS  Google Scholar 

  39. S. Nagatomo, Y. Ishikawa, and S. Hoshino, Near-infrared laser annealing of Ge layers epitaxially grown on Si for high-performance photonic devices. J. Vac. Sci. Technol. B 35, 051206 (2017).

    Article  Google Scholar 

  40. S. Sze and M.K. Lee, Semiconductor Device Physics and Technology (Wiley, 2015).

  41. M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, and D.G. Truhlar, Consistent van der Waals Radii for the whole main group. J. Phys. Chem. A 113, 19 (2009).

    Article  Google Scholar 

  42. D.R. Lide, G. Baysinger, L.I. Berger, R.N. Goldberg, H.V. Kehiaian, K. Kuchitsu, G. Rosenblatt, D.L. Roth, and D. Zwillinger, CRC Handbook of Chemistry and Physics (CRC Press, 2005).

  43. R.R. Reeber and K. Wang, Thermal expansion and lattice parameters of group IV semiconductors. Mater. Chem. Phys. 46, 259 (1996).

    Article  CAS  Google Scholar 

  44. C.G. Van de Walle, Band lineups deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871 (1989).

    Article  Google Scholar 

  45. S.L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

  46. J. Liu, D.D. Cannon, K. Wada, Y. Ishikawa, D.T. Danielson, S. Jongthammanurak, J. Michel, and L.C. Kimerling, Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100). Phys. Rev. B 70, 155309 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Ishikawa.

Ethics declarations

Conflict of interest

This study was funded by SUMCO Corporation. Tetsuya Nakai is an employee of SUMCO Corporation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, K., Motomura, K., Piedra-Lorenzana, J.A. et al. Trench-Filling Epitaxy of Germanium on (001) Silicon Enhanced Using [100]-Oriented Patterns. J. Electron. Mater. 52, 5066–5074 (2023). https://doi.org/10.1007/s11664-023-10306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10306-z

Keywords

Navigation