Log in

Do** Effect of Ca2+ Ions on the Electric and Magnetic Properties of Aurivillius CaxBi6–xFe0.5Co0.5Ti4O18 Thin Films Prepared by Chemical Solution Deposition

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Do** with different valence ions in Aurivillius compounds can induce lattice distortion and further affect the ferroelectric and magnetic properties of the materials. In this work, CaxBi6–xFe0.5Co0.5Ti4O18 thin films were prepared to study the influence of the substitution of Ca2+ for Bi3+ on the microstructure and the dielectric, ferroelectric, leakage, and magnetic properties. The results show that the lattice distortion and the internal stress are both increased with increasing Ca2+ do** level. The dielectric and ferroelectric measurements suggest that the film with a low do** concentration (x = 0.2) exhibits better performance than the films with higher do** concentrations. Although lattice distortion and valence changes in the ions have been produced, which may have affected the distortion of the A/B-O octahedral crystal structure, tests of magnetic properties demonstrate that no regular changes are caused by the Ca2+ do**.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. H.Y. Ye, Y.Y. Tang, P.F. Li, W.Q. Liao, J.X. Gao, X.N. Hua, H. Cai, P.P. Shi, Y.M. You, and R.G. **ong, Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018).

    Article  CAS  Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  CAS  Google Scholar 

  3. W. Eerenstein, N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  4. M. Algueró, M. Pérez-Cerdán, R.P. Del Real, J. Ricote, and A. Castro, Novel Aurivillius Bi4Ti3-2xNbxFexO12 phases with increasing magnetic-cation fraction until percolation: a novel approach for room temperature multiferroism. J. Mater. Chem. C 8, 12457–12469 (2020).

    Article  Google Scholar 

  5. Z.B. Pan, P. Wang, X. Hou, L.M. Yao, G.Z. Zhang, J. Wang, J.J. Liu, M. Shen, Y.J. Zhang, S.L. Jiang, J.W. Zhai, and Q. Wang, Fatigue-free Aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Adv. Energy Mater. 10, 2001536 (2020).

    Article  CAS  Google Scholar 

  6. D.P. Song, J. Yang, B.B. Yang, L. Chen, F. Wang, and X.B. Zhu, Evolution of structure and ferroelectricity in Aurivillius Bi4Bin-3Fen-3Ti3O3n+3 thin films. J. Mater. Chem. C 6, 8618–8627 (2018).

    Article  CAS  Google Scholar 

  7. M. Zhang, X.Z. Xu, Y.J. Yue, M. Palma, M.J. Reece, and H.X. Yan, Multi elements substituted Aurivillius phase relaxor ferroelectrics using high entropy design concept. Mater. Des. 200, 109447 (2021).

    Article  CAS  Google Scholar 

  8. S. Hajra, M. Sahu, D. Oh, and H.J. Kim, Lead-free and flexible piezoelectric nanogenerator based on CaBi4Ti4O15 Aurivillius oxides/PDMS composites for efficient biomechanical energy harvesting. Ceram. Int. 47, 15695–15702 (2021).

    Article  CAS  Google Scholar 

  9. G. Wang, Y. Huang, S. Sun, J. Wang, R. Peng, and Y. Lu, Layer effects on the magnetic behaviors of Aurivillius compounds Bin+1Fen-3Ti3O3n+1 (n= 6, 7, 8, 9). J. Am. Ceram. Soc. 99, 1318–1323 (2016).

    Article  CAS  Google Scholar 

  10. Z. Liu, J. Yang, X.W. Tang, L.H. Yin, X.B. Zhu, J.M. Dai, and Y.P. Sun, Multiferroic properties of Aurivillius phase Bi6Fe2-xCoxTi3O18 thin films prepared by a chemical solution deposition route. Appl. Phys. Lett. 101, 122402 (2012).

    Article  Google Scholar 

  11. J.B. Li, Y.P. Huang, G.H. Rao, G.Y. Liu, J. Luo, J.R. Chen, and J.K. Liang, Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Appl. Phys. Lett. 96, 222903 (2010).

    Article  Google Scholar 

  12. J. Yang, W. Tong, Z. Liu, X.B. Zhu, J.M. Dai, W.H. Song, Z.R. Yang, and Y.P. Sun, Structural, magnetic, and EPR studies of the Aurivillius phase Bi6Fe2Ti3O18 and Bi6FeCrTi3O18. Phys. Rev. B 86, 104410–104417 (2012).

    Article  Google Scholar 

  13. J. Yang, L.H. Yin, Z. Liu, X.B. Zhu, W.H. Song, J.M. Dai, Z.R. Yang, and Y.P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3O18 and the doped compounds. Appl. Phys. Lett. 101, 012402 (2012).

    Article  Google Scholar 

  14. J.L. Wang, Z.P. Fu, R.R. Peng, M. Liu, S.J. Sun, H.L. Huang, L. Li, R.J. Knize, and Y.L. Lu, Low magnetic field response single-phase multiferroics under high temperature. Mater. Horiz. 2, 232–236 (2015).

    Article  CAS  Google Scholar 

  15. C.M. Raghavan, J.W. Kim, J.Y. Choi, J.-W. Kim, and S.S. Kim, Effects of donor W6+-ion do** on the microstructural and multiferroic properties of Aurivillius Bi7Fe3Ti3O21 thin film. Appl. Surf. Sci. 346, 201–206 (2015).

    Article  CAS  Google Scholar 

  16. D.P. Song, J. Yang, B. Yuan, X.Z. Zuo, X.W. Tang, L. Chen, W.H. Song, X.B. Zhu, and Y.P. Sun, Improved ferroelectric polarization of V-doped Bi6Fe2Ti3O18 thin films prepared by a chemical solution deposition. J. Appl. Phys. 117, 244105 (2015).

    Article  Google Scholar 

  17. S.M. Liu, Structural and magnetic properties of high magnetic-field-assisted hydrothermal synthesized Bi6Fe2Ti3O18 particles. Mod. Phys. Lett. B 34, 2050043 (2020).

    Article  CAS  Google Scholar 

  18. Z. Li, J. Ma, Z.P. Gao, G. Viola, V. Koval, A. Mahajan, X. Li, C.L. Jia, C.W. Nan, and H.X. Yan, Room temperature magnetoelectric coupling in intrinsic multiferroic Aurivillius phase textured ceramics. Dalton Trans. 45, 14049–14052 (2016).

    Article  CAS  Google Scholar 

  19. D.P. Song, X.Z. Zuo, B. Yuan, X.W. Tang, W.H. Song, J. Yang, X.B. Zhu, and Y.P. Sun, Enhanced remnant polarization in ferroelectric Bi6Fe2Ti3O18 thin films. Cryst. Eng. Comm. 17, 1609–1614 (2015).

    Article  CAS  Google Scholar 

  20. X.Z. Zuo, J. Yang, B. Yuan, D.P. Song, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, and Y.P. Sun, Enhanced multiferroic properties of Aurivillius Bi6Fe1.4Co0.6Ti3O18 thin films by magnetic field annealing. Appl. Phys. Lett. 107, 222901 (2015).

    Article  Google Scholar 

  21. Z. Yu, X. Meng, Z. Zheng, Y. Lu, H. Chen, C. Huang, H. Sun, K. Liang, Z. Ma, Y. Qi, and T. Zhang, Room temperature multiferroic properties of rare-earth-substituted Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 ceramics. Mater. Res. Bull. 115, 235–241 (2019).

    Article  CAS  Google Scholar 

  22. X.Z. Zuo, E.J. He, J. Bai, S.J. Zhu, X.C. Kan, Z.Z. Hui, J. Yang, X.B. Zhu, and J.M. Dai, Magnetic, dielectric and optical properties of five-layered Aurivillius phase Bi6Fe2Ti3O18-based ceramics. Curr. Appl. Phys. 19, 1391–1398 (2019).

    Article  Google Scholar 

  23. Y. Li, S.D. Zhou, H. Wu, J.K. Chen, Y.G. Wang, and F.M. Pan, Structural evolution and multiferroic properties in the vicinity of MPB of Ca2Bi4Ti5-xMnxO18 solid solutions. J. Magn. Magn. Mater. 498, 166209 (2020).

    Article  CAS  Google Scholar 

  24. M. Garcıa-Guaderrama, L. Fuentes-Montero, A. Rodriguez, and L. Fuentes, Structural characterization of Bi6Ti3Fe2O18 obtained by molten salt synthesis. Integr. Ferroelectr. 83, 41–47 (2006).

    Article  Google Scholar 

  25. X.M. Xue, H. Li, S.Y. Liu, L.P. Lu, Q.S. Liu, X.Y. Mi, Z.H. Bai, X.Y. Zhang, and X.L. Liu, Effect of the anion on the luminescence properties of Bi3+-doped X-mayenite (X=O, F, Cl) phosphors. Mater. Res. Bull. 139, 111283 (2021).

    Article  CAS  Google Scholar 

  26. T.T. Wang, H.M. Deng, W.L. Zhou, S.F. Si, B.L. Guo, X.P. Zheng, P.X. Yang, and J.H. Chu, Enhanced ferromagnetism in Ni doped Aurivillius compound Bi6Fe2Ti3O18 thin films prepared by chemical solution deposition. Mater. Lett. 220, 261–265 (2018).

    Article  CAS  Google Scholar 

  27. W.L. Zhou, H.M. Deng, T. Zheng, P.X. Yang, and J.H. Chu, Pb-free semiconductor ferroelectrics: an experimental study of Ba(Ti0.75Ce0.125Pd0.125)O3-δ thin films. Mater. Lett. 177, 1–4 (2016).

    Article  CAS  Google Scholar 

  28. R. Placeres-Jiménez, J.P. Rino, and J.A. Eiras, Modeling ferroelectric permittivity dependence on electric field and estimation of the intrinsic and extrinsic contributions. J. Phys. D Appl. Phys. 48, 035304 (2015).

    Article  Google Scholar 

  29. W. Bai, C. Chen, J. Yang, Y.Y. Zhang, R.J. Qi, R. Huang, X.D. Tang, C.G. Duan, and J.H. Chu, Dielectric behaviors of Aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: determining the intrinsic magnetoelectric responses by impedance spectroscopy. Sci. Rep. 5, 17846 (2015).

    Article  Google Scholar 

  30. J.P. de la Cruz, E. Joanni, P.M. Vilarinho, and A.L. Kholkin, Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films. J. Appl. Phys. 108, 114106 (2010).

    Article  Google Scholar 

  31. L. Cao, Z.Z. Ding, X.Z. Liu, J.C. Ren, Y.K. Chen, M. Ouyang, X.Q. Chen, and F.J. Yang, Photovoltaic properties of Aurivillius Bi4NdTi3FeO15 ceramics with different orientations. J. Alloys Compd. 800, 134–139 (2019).

    Article  CAS  Google Scholar 

  32. C. Wang, M. Takahashi, H. Fu**o, X. Zhao, E. Kume, T. Horiuchi, and S. Sakai, Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J. Appl. Phys. 99, 054104 (2006).

    Article  Google Scholar 

  33. C.M. Raghavan, J.W. Kim, J.Y. Choi, J.-W. Kim, and S.S. Kim, Investigation of structural, electrical and multiferroic properties of co-doped Aurivillius Bi6Fe2Ti3O18 thin films. Ceram. Int. 41, 3277–3282 (2015).

    Article  Google Scholar 

  34. I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  35. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  36. T.T. Wang, H.M. Deng, X.K. Meng, H.Y. Cao, W.L. Zhou, P. Shen, Y.Y. Zhang, P.X. Yang, and J.H. Chu, Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2–xCox/2Nix/2Ti3O18. Ceram. Int. 43, 8792–8799 (2017).

    Article  CAS  Google Scholar 

  37. P. **ong, J. Yang, Y.F. Qin, W.J. Huang, X.W. Tang, L.H. Yin, W.H. Song, J.M. Dai, X.B. Zhu, and Y.P. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2-xNixTi3O18 (0≤x≤1). Ceram. Int. 43, 4405–4410 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant Nos. 11804005 and 62004012), Key Scientific Research Projects for Colleges and Universities in Henan Province (Grant No. 21A140002), Training Program for University Key Teachers of Henan Province (Grant No. 2020GGJS235), Anhui Province Key R&D Program International Cooperation Project (Grant No. 202104b11020012), Research Fund of Anyang Institute of Technology (Grant No. YPY2020003).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Material preparation was performed by YD and XH. Data collection and analysis were performed by CL, CC and FL. The first draft of the manuscript was written by YD and QG. All authors commented on previous versions of the manuscript. Final manuscript read and approved by all authors.

Corresponding author

Correspondence to Qianqian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Gao, Q., Hu, X. et al. Do** Effect of Ca2+ Ions on the Electric and Magnetic Properties of Aurivillius CaxBi6–xFe0.5Co0.5Ti4O18 Thin Films Prepared by Chemical Solution Deposition. J. Electron. Mater. 52, 2505–2513 (2023). https://doi.org/10.1007/s11664-022-10206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10206-8

Keywords

Navigation