Log in

Characterization of a Pentagonal CSRR Bandpass Filter for Terahertz Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With the fast magnification of terahertz (THz) technology, it becomes necessary to regulate the terahertz wave transmittance resourcefully. THz filters are crucial for managing devices in THz communication. A metamaterial-based THz bandpass filter (BPF) using a complementary split-ring resonator (CSRR) is proposed with the structure of a square in pentagon (SP). The proposed filter provides high tunability over resonant frequency and bandwidth. The result shows that the resonant frequency of the designed filter is 7 THz, a maximum 3 dB bandwidth of 1.6 THz, return loss of − 28.66 dB, low insertion loss of − 0.001 dB, and the transmittance is almost 100%. The proposed THz filters are used in security screening and biomedical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I.F. Akyildiz, J.M. Jornet and C. Han, Terahertz Band: Next Frontier for Wireless Communications. Phys. Commun. 12, 16–32 (2014).

    Article  Google Scholar 

  2. W. Yang and Y.S. Lin, Tunable Metamaterial Filter for Optical Communication in the Terahertz Frequency Range. Opt. Express 28, 17620–17629 (2020).

    Article  Google Scholar 

  3. R.K. Kushwaha and P. Karuppanan, Design and Analysis of Vivaldi Antenna with Enhanced Radiation Characteristics for mm-Wave and THz Applications. Opt. Quant. Electron. 51, 1–19 (2019).

    Article  Google Scholar 

  4. K.L. Nguyen, T. Friščić, G.M. Day, L.F. Gladden and W. Jones, Terahertz Time-Domain Spectroscopy and the Quantitative Monitoring of Mechanochemical Cocrystal Formation. Nat. Mater. 6, 206–209 (2007).

    Article  CAS  Google Scholar 

  5. B.N. Behnken, G. Karunasiri, D.R. Chamberlin, P.R. Robrish and J. Faist, Real-Time Imaging Using a 2.8 THz Quantum Cascade Laser and Uncooled Infrared Microbolometer Camera. Opt. let. 33, 440–442 (2008).

    Article  Google Scholar 

  6. L. Liebermeister, S. Nellen, R. Kohlhaas, S. Breuer, M. Schell and B. Globisch, Ultra-Fast, High-Bandwidth Coherent CW THz Spectrometer for Non-Destructive Testing. J. Infrared, Millimeter, Terahertz Waves 40, 288–296 (2019).

    Article  Google Scholar 

  7. S.K. Danasegaran, E.C. Britto and S.C. Xavier, Exploration of Trigonal Patch Antenna Characteristics with the Impact of 2D Photonic Crystal of Various Air Hole Shapes. J. Electron. Mater. 50, 5365–5374 (2021).

  8. S.K. Danasegaran, E.C. Britto and W. Johnson, Investigation of the Influence of Fluctuation in Air Hole Radii and Lattice Constant on Photonic Crystal Substrate for Terahertz Applications. Opt. Eng. 59(8), 087102 (2020).

  9. F. Falcone, T. Lopetegi, J.D. Baena, R. Marqués, F. Martín and M. Sorolla, Effective Negative-/Spl Epsiv/Stopband Microstrip Lines Based on Complementary Split Ring Resonators. IEEE Microwave Wirel. Compon. Lett. 14, 280–282 (2004).

    Article  Google Scholar 

  10. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel and T. Kurner, Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives. IEEE Antennas Propag. Mag. 49, 24–39 (2007).

    Article  Google Scholar 

  11. L. Luo, I. Chatzakis, J. Wang, F.B. Niesler, M. Wegener, T. Koschny and C.M. Soukoulis, Broadband Terahertz Generation from Metamaterials. Nat. Commun. 5, 1–6 (2014).

    CAS  Google Scholar 

  12. J.S. Li, Y. Li and L. Zhang, Terahertz Bandpass Filter Based on Frequency Selective Surface. IEEE Photonics Technol. Lett. 30, 238–241 (2017).

    Article  Google Scholar 

  13. Saha, C., & Siddiqui, J. Y. (2009, December). Estimation of the Resonance Frequency of Conventional and Rotational Circular Split Ring Resonators. In 2009 Applied Electromagnetics Conference (AEMC) (pp. 1-3). IEEE.

  14. C. Saha, J. Y. Siddiqui, Y. M. M. Antar, “Theoretical Investigation of the Square SRR”. Proceedings of URSI NA Radio Science Meet, 2007.

  15. Vidyalakshmi, M. R., & Raghavan, S. (2009, December). A CAD Model of Triangular Split Ring Resonator Based on Equivalent Circuit Approach. In 2009 Applied Electromagnetics Conference (AEMC) (pp. 1-4). IEEE.

  16. V. Sharma, S.S. Pattnaik, T. Garg and S. Devi, A Microstrip Metamaterial Split Ring Resonator. Int. J. Phys. Sci. 6, 660–663 (2011).

    CAS  Google Scholar 

  17. S. Bose, M. Ramaraj, S. Raghavan and S. Kumar, Mathematical Modeling, Equivalent Circuit Analysis and Genetic Algorithm Optimization of an N-Sided Regular Polygon Split Ring Resonator (NRPSRR). Procedia Technol. 6, 763–770 (2012).

    Article  Google Scholar 

  18. Bage, A., & Das, S. (2013, December). Studies of Some Non-Conventional Split Ring and Complementary Split Ring Resonators for Waveguide Band Stop & Band Pass Filter Application. In 2013 International Conference on Microwave and Photonics (ICMAP) (pp. 1-5). IEEE.

  19. L. Zhu, H. Bu and K. Wu, Broadband and Compact Multi-Pole Microstrip Bandpass Filters Using Ground Plane Aperture Technique. IEE Proc.-Microwaves, Anten. Propag. 149, 71–77 (2002).

    Article  Google Scholar 

  20. Abdel-Rahman, A., Ali, A. R., Amari, S., & Omar, A. S. (2005, June). Compact Bandpass Filters Using Defected Ground Structure (DGS) Coupled Resonators. In IEEE MTT-S International Microwave Symposium Digest, 2005. (pp. 1479-1482). IEEE.

  21. R. Azadegan and K. Sarabandi, Miniature High-Q Double-Spiral Slot-Line Resonator Filters. IEEE Trans. Microw. Theory Tech. 52, 1548–1557 (2004).

    Article  Google Scholar 

  22. B. Wu, B. Li and C. Liang, Design of Lowpass Filter Using a Novel Split-Ring Resonator Defected Ground Structure. Microw. Opt. Technol. Lett. 49, 288–291 (2007).

    Article  Google Scholar 

  23. J. Zhang, B. Cui, S. Lin and X.W. Sun, Sharp-Rejection Low-Pass Filter with Controllable Transmission Zero Using Complementary Split Ring Resonators (CSRRs). Prog. Electromag. Res. 69, 219–226 (2007).

    Article  Google Scholar 

  24. G.L. Wu, W. Mu, D.D.D. Li and Y.C. Jiao, Design of Novel Dual-Band Bandpass Filter with Microstrip Meander-Loop Resonator and CSRR DGS. Prog. Electromag. Res. 78, 17–24 (2008).

    Article  Google Scholar 

  25. J. Bonache, I. Gil, J. Garcia-Garcia and F. Martin, Novel Microstrip Bandpass Filters Based on Complementary Split-Ring Resonators. IEEE Trans. Microw. Theory Tech. 54, 265–271 (2006).

    Article  Google Scholar 

  26. J.X. Niu, X.L. Zhou and L.S. Wu, Analysis and Application of Novel Structures Based on Split Ring Resonators and Coupled Lines. Prog. Electromag. Res. 75, 153–162 (2007).

    Article  Google Scholar 

  27. J. Bonache, F. Martín, I. Gil, J. García-García, R. Marqués and M. Sorolla, Microstrip Bandpass Filters with Wide Bandwidth and Compact Dimensions. Microw. Opt. Technol. Lett. 46, 343–346 (2005).

    Article  Google Scholar 

  28. E.C. Britto, S.K. Danasegaran, S.C. Xavier et al. Soil Nutrient Detection Based on Photonic Crystal Hexagonal Resonator for Smart Farming. Braz J Phys 51, 507–514 (2021).

  29. Z. Shi, H. Zhang, K. Khan, R. Cao, Y. Zhang, C. Ma and H. Zhang, Two-Dimensional Materials Toward Terahertz Optoelectronic Device Applications. J. Photochem. Photobiol., C 51, 100473 (2022).

    Article  CAS  Google Scholar 

  30. S. Yadollahzadeh and H. Baghban, Enhanced Optical Characteristics of Terahertz Bandpass Filters Based on Plasmonic Nanoparticles. J. Nanophotonics 10, 026002 (2016).

    Article  Google Scholar 

  31. Ichikawa, K., Han, Z., & Toshiyoshi, H. (2017, August). Tunable Terahertz Bandpass Filter Using MEMS Reconfigurable Metamaterial. In 2017 International Conference on Optical MEMS and Nanophotonics (OMN) (pp. 1-2). IEEE.

  32. D. Sun, L. Qi and Z. Liu, Terahertz Broadband Filter and Electromagnetically Induced Transparency Structure with Complementary Metasurface. Results Phys. 16, 102887 (2020).

    Article  Google Scholar 

  33. A.B. Asl, A. Rostami and I.S. Amiri, Terahertz Band Pass Filter Design Using Multilayer Metamaterials. Opt. Quant. Electron. 52, 1–13 (2020).

    Article  CAS  Google Scholar 

  34. K. Jia, L. Fan and Z. Cao, THz Narrow Band-Pass Filter Based on Stopband Modulation in Corrugated Parallel Plate Waveguides. Opt. Commun. 465, 125604 (2020).

    Article  CAS  Google Scholar 

  35. Che, Z., Zhang, G., Ren, P., Yue, J., Li, Z., Lun, Y., & Feng, Y. (2021). Narrow Bandpass Filter Based on Vanadium Dioxide can be used for Terahertz Stealth. J. Opt. 1-7.

  36. Y. Chen, J. Li, C. He, J. Qin, X. Chen and S. Li, Enhancement of High Transmittance and Broad Bandwidth Terahertz Metamaterial Filter. Opt. Mater. 115, 111029 (2021).

    Article  CAS  Google Scholar 

  37. F. Zhu and Y.S. Lin, Programmable Multidigit Metamaterial Using Terahertz Electric Spilt-Ring Resonator. Opt. Laser Technol. 134, 106635 (2021).

    Article  CAS  Google Scholar 

  38. C.C. Chang, L. Huang, J. Nogan and H.T. Chen, Invited Article: Narrowband Terahertz Bandpass Filters Employing Stacked Bilayer Metasurface Antireflection Structures. APL Photonics 3, 051602 (2018).

    Article  CAS  Google Scholar 

  39. Fahad, A. K., Ruan, C., Haq, T. U., & Ullah, S. (2018, August). Design of Narrow Band Terahertz Waveguide Filters Including Power Handling Analysis. In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama) (pp. 1637-1641). IEEE.

  40. A.A. Gavdush, N.V. Chernomyrdin, D.V. Lavrukhin, Y. Cao, G.A. Komandin, I.E. Spektor and K.I. Zaytsev, Proof of Concept for Continuously-Tunable Terahertz Bandpass Filter Based on a Gradient Metal-Hole Array. Opt. Express 28, 26228–26238 (2020).

    Article  CAS  Google Scholar 

  41. A. Ferraro, D.C. Zografopoulos, R. Caputo and R. Beccherelli, Guided-Mode Resonant Narrowband Terahertz Filtering by Periodic Metallic Stripe and Patch Arrays on Cyclo-Olefin Substrates. Sci. Rep. 8, 1–8 (2018).

    Article  CAS  Google Scholar 

  42. H. Shahounvand and A. Fard, Design and Simulation of a New Narrow Terahertz Bandpass Filter. SN Appl. Sci. 2, 1–7 (2020).

    Article  Google Scholar 

  43. L. Liang, B. **, J. Wu, Y. Huang, Z. Ye, X. Huang and P. Wu, A Flexible Wideband Bandpass Terahertz Filter Using Multi-Layer Metamaterials. Appl. Phys. B 113, 285–290 (2013).

    Article  CAS  Google Scholar 

  44. P. Yao, L. Lei, Z. Yang, Y. Tuo and X. **, Terahertz Wideband Filter Based on Sub-Wavelength Binary Simple Periodic Structure. Appl. Sci. 9, 407 (2019).

    Article  CAS  Google Scholar 

  45. J. Ruan, F. Lan, L. Wang and S. Ji, Ultra-Wideband THz Metamaterial Filter with Steep Cut-Off. J. Electromag. Waves Appl. 35, 431–440 (2021).

    Article  Google Scholar 

  46. I.N. Idrus, M.R.I. Faruque, S. Abdullah, M.U. Khandaker, N. Tamam and A. Sulieman, An Oval-Square Shaped Split Ring Resonator Based Left-Handed Metamaterial for Satellite Communications and Radar Applications. Micromachines 13, 578 (2022).

    Article  Google Scholar 

  47. I. Bahl and P. Bhartia, Microwave Solid State Circuit Design (Wiley-Interscience, 2003).

    Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the reviewers for their critical comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sagadevan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caroline, B.E., Sagadevan, K., Danasegaran, S.K. et al. Characterization of a Pentagonal CSRR Bandpass Filter for Terahertz Applications. J. Electron. Mater. 51, 5405–5416 (2022). https://doi.org/10.1007/s11664-022-09779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09779-1

Keywords

Navigation