Log in

The Surface Structure Origin of Carbon Fiber with Enhanced Electrothermal Properties Prepared by Modification of Graphene Coating

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polyacrylonitrile (PAN)-based carbon fibers are widely used as reinforcement materials and heating elements for their excellent mechanical and electric heating properties. But fiber oxidation at high temperature can easily cause electric heating device failure. Herein, the electrothermal effect of the carbon fiber modified by graphene epoxy resin coating was investigated, and the mechanism of electrothermal enhancement of the fiber was explored by detailed analysis of the surface structure and finite element simulation. The results showed that graphene coating and sintering under N2 environment have effective protective effects on the carbon fiber, which greatly improves the electrothermal performance of the carbon fiber. Graphene coating-modified carbon fibers reached about 35°C at 3 V within 20 s, and the equilibrium temperature is about 21% higher than that of the pristine carbon fiber. At the same time, in 20 electric heating and cooling tests at 5 V, the electric temperature can quickly reach 82°C with good stability. Further simulation showed that the electrothermal performance may be enhanced by the current accumulation caused by the surface defect structure of modified carbon fibers. The modification method of graphene coating on carbon fiber surface presented in this paper is simple and easy to control and has great potential to be applied to industrial and civil electric heating equipment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.C. Li, X.R. Huang, L.J. Zeng, R.F. Li, H.F. Tian, X.W. Fu, Y. Wang, and W.H. Zhong, A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci. 54, 1036 (2019). https://doi.org/10.1007/s10853-018-3006-9.

    Article  CAS  Google Scholar 

  2. P. Alam, D. Mamalis, C. Robert, C. Floreani, and C.M.Ó. Brádaigh, The fatigue of carbon fiber reinforced plastics: a review. Compos. Part. B-Eng. 166, 555 (2019). https://doi.org/10.1016/j.compositesb.2019.02.016.

    Article  CAS  Google Scholar 

  3. Y. **ong, J. Hu, X. Nie, D. Wei, N.G. Zhang, S. Peng, X.W. Dong, Y.C. Li, and P.F. Fang, One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite: influence of graphene coating. Mater. Des. 191, 108633 (2020). https://doi.org/10.1016/j.matdes.2020.108633.

    Article  CAS  Google Scholar 

  4. P. Hu, Y. Cheng, M.S. **e, Y. Yang, C. Liu, Q. Qu, X.H. Zhang, and S.Y. Du, Damage mechanism analysis to the carbon fiber and fiber-ceramic interface tailoring of Cf/ZrC-SiC using PyC coating. Ceram. Int. 44, 19038 (2018). https://doi.org/10.1016/j.ceramint.2018.07.065.

    Article  CAS  Google Scholar 

  5. Y.Z. Cai, L.F. Cheng, X.W. Yin, H.J. Zhang, H.F. Yin, and G.Z. Yan, Thermophysical properties of three-dimensional ceramic-filler-modified carbon/carbon composites. Ceram. Int. 45, 1302 (2019). https://doi.org/10.1016/j.ceramint.2018.10.015.

    Article  CAS  Google Scholar 

  6. M.E. Darzi, S.I. Golestaneh, M. Kamali, and G. Karimi, Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder. Renew. Energy 135, 719 (2019). https://doi.org/10.1016/j.renene.2018.12.028.

    Article  CAS  Google Scholar 

  7. T.Q. Gao, Y. Zhao, G.H. Zhou, Y. Han, Y.W. Zheng, Z.D. Shan, D. Hui, F.J. Xu, and Y.P. Qiu, Fabrication and characterization of three dimensional woven carbon fiber/silica ceramic matrix composites. Compos. Part B-Eng. 77, 122 (2015). https://doi.org/10.1016/j.compositesb.2015.02.024.

    Article  CAS  Google Scholar 

  8. S.-J. Park, Carbon Fibers, 2nd ed., (Springer, 2018).

    Book  Google Scholar 

  9. F. He, The electrothermal property and application of carbon fiber. New Chem. Mater. 33, 7 (2005).

    Google Scholar 

  10. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F.T. Waarbeek, J.J.D. Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, and M. Pasquali, Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182 (2013). https://doi.org/10.1126/science.1228061.

    Article  CAS  Google Scholar 

  11. D. Janas and K.K. Koziol, Rapid electrothermal response of high-temperature carbon nanotube film heaters. Carbon 59, 457 (2013). https://doi.org/10.1016/j.carbon.2013.03.039.

    Article  CAS  Google Scholar 

  12. Y.H. Cao, F.I. Farha, D.S. Ge, X.H. Liu, W. Liu, G. Li, T. Zhang, and F.J. Xu, Highly effective E-heating performance of nickel coated carbon fiber and its composites for de-icing application. Compos. Struct. 229, 111397 (2019). https://doi.org/10.1016/j.compstruct.2019.111397.

    Article  Google Scholar 

  13. X.D. Yao, S.C. Hawkins, and B.G. Falzon, An advanced anti-icing/deicing system utilizing highly aligned carbon nanotube webs. Carbon 136, 130 (2018). https://doi.org/10.1016/j.carbon.2018.04.039.

    Article  CAS  Google Scholar 

  14. Y. **a, P. Cai, Y.N. Liu, J. Zhu, R. Guo, W.K. Zhang, Y.P. Gan, H. Huang, J. Zhang, C. Liang, X.P. He, and Z. **ao, A low-cost and high-efficiency electrothermal composite film composed of hybrid conductivity fillers and polymer blends matrix for high-performance plate heater. J. Electron. Mater. 50, 3084 (2021). https://doi.org/10.1007/s11664-021-08873-0.

    Article  CAS  Google Scholar 

  15. N.I. Baklanova, T.M. Zima, A.I. Boronin, S.V. Kosheev, A.T. Titov, N.V. Isaeva, D.V. Graschenkov, and S.S. Solntsev, Protective ceramic multilayer coatings for carbon fibers. Surf. Coat. Technol. 201, 2313 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.046.

    Article  CAS  Google Scholar 

  16. P.C. Kang, G.Q. Chen, B. Zhang, G.H. Wu, S. Mula, and C.C. Koch, Oxidation protection of carbon fibers by a reaction sintered nanostructured SiC coating. Surf. Coat. Technol. 206, 305 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.016.

    Article  CAS  Google Scholar 

  17. X.R. Ren, H.J. Li, Y.H. Chu, K.Z. Li, and Q.G. Fu, ZrB2–SiC gradient oxidation protective coating for carbon/carbon composites. Ceram. Int. 40, 7171 (2014). https://doi.org/10.1016/j.ceramint.2013.12.055.

    Article  CAS  Google Scholar 

  18. X.F. Zhang, D.H. Li, K.J. Liu, J.F. Tong, and X.S. Yi, Flexible graphene-coated carbon fiber veil/polydi-methylsiloxane mats as electrothermal materials with rapid responsiveness. Int. J. Lightweight Mater. Manuf. 2, 241 (2019). https://doi.org/10.1016/j.ijlmm.2019.04.002.

    Article  Google Scholar 

  19. J.G. Zhao, L.X. Yang, F.Y. Li, R.C. Yu, and C.Q. **, Structural evolution in the graphitization process of activated carbon by high-pressure sintering. Carbon 47, 744 (2009). https://doi.org/10.1016/j.carbon.2008.11.006.

    Article  CAS  Google Scholar 

  20. Y.C. Li, T. Xue, R.F. Li, X.R. Huang, and L.J. Zeng, Influence of a fiberglass layer on the lightning strike damage response of CFRP laminates in the dry and hygrothermal environments. Compos. Struct. 187, 179 (2017). https://doi.org/10.1016/j.compstruct.2017.12.057.

    Article  Google Scholar 

  21. X. Qian, J.H. Zhi, L.Q. Chen, J.J. Zhong, X.F. Wang, Y.G. Zhang, and S.L. Song, Evolution of microstructure and electrical property in the conversion of high strength carbon fiber to high modulus and ultrahigh modulus carbon fiber. Compos. Part. A-Appl. S. 112, 111 (2018). https://doi.org/10.1016/j.compositesa.2018.05.030.

    Article  CAS  Google Scholar 

  22. X. Qian, X.F. Wang, J.J. Zhong, J.H. Zhi, F.F. Heng, Y.G. Zhang, and S.L. Song, Effect of fiber microstructure studied by Raman spectroscopy upon the mechanical properties of carbon fibers. J. Raman Spectrosc. 50, 665 (2019). https://doi.org/10.1002/jrs.5569.

    Article  CAS  Google Scholar 

  23. X.Y. Liang, L.C. Ling, C.X. Lu, and L. Liu, Resistivity of carbon fibers/ABS resin composites. Mater. Lett. 43, 144 (2000). https://doi.org/10.1016/S0167-577X(99)00247-5.

    Article  CAS  Google Scholar 

  24. U. Kumar, S. Upadhyay, and P.A. Alvi, Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 Ruddlesden popper oxide. Physica B 604, 412708 (2021). https://doi.org/10.1016/j.physb.2020.412708.

    Article  CAS  Google Scholar 

  25. B.L. Choudhary, U. Kumar, S. Kumar, S. Chander, S. Kumar, S. Dalela, S.N. Dolia, and P.A. Alvi, Irreversible magnetic behavior with temperature variation of Ni0.5Co0.5Fe2O4 nanoparticles. J. Magn. Magn. Mater. 507, 166861 (2020). https://doi.org/10.1016/j.jmmm.2020.166861.

    Article  CAS  Google Scholar 

  26. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, B.L. Choudhary, and S. Kumar, Structural, cation distribution, optical and magnetic properties of quaternary Co0.4+xZn0.6-xFe2O4 (x = 0.0, 0.1 and 0.2) and Li doped quinary Co0.4+xZn0.5-xLi0.1Fe2O4 (x = 0.0, 0.05 and 0.1) nanoferrites. J. Alloy. Compd. 828, 154388 (2020). https://doi.org/10.1016/j.jallcom.2020.154388.

    Article  CAS  Google Scholar 

  27. V. Dhayal, S.Z. Hashmi, U. Kumar, B.L. Choudhary, A.E. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S.N. Dolia, and P.A. Alvi, Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 55, 14829 (2020). https://doi.org/10.1007/s10853-020-05093-5.

    Article  CAS  Google Scholar 

  28. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, A.E. Kuznetsov, S. Dalela, S.K. Gupta, and P.A. Alvi, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 41, 2792 (2020). https://doi.org/10.1002/pc.25576.

    Article  CAS  Google Scholar 

  29. J.Z. Fu, Q.Y. Sun, C. Long, X. Hu, N. Wang, H.M. Guo, W. Zeng, Y. **ong, and N. Wei, Enhanced pressure sensors in supercapacitive–piezoelectric mixed mode with jelly-gel as dielectric layer. J. Mater. Sci. 57, 3553 (2022). https://doi.org/10.1007/s10853-021-06801-5.

    Article  CAS  Google Scholar 

  30. L.S. Huang, H.M. Guo, C. Long, J.Z. Fu, W. Zeng, Y. **ong, N. Wei, X.H. Guo, C. Xu, and P.F. Fang, Regenerated silk fibroin-modified soft graphene aerogels for supercapacitive stress sensors. J. Electrochem. Soc. 168, 117511 (2021). https://doi.org/10.1149/1945-7111/ac34cb.

    Article  CAS  Google Scholar 

  31. X. Nie, Y. **ong, and W. Zeng, The interfacial lattice origin of anatase titanium dioxide by hydrothermal architecture. J. Cryst. Growth. 552, 125927 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125927.

    Article  CAS  Google Scholar 

  32. W.P. Zhang, L.G. Song, T. Zhu, Y. **ong, H.L. Ma, Q.Z. Yan, X.Z. Cao, B.Y. Wang, and S.X. **, Investigation of spatial relationship between helium bubbles and dislocation loops in RAFM steel. J. Nucl. Mater. 548, 152862 (2021). https://doi.org/10.1016/j.jnucmat.2021.152862.

    Article  CAS  Google Scholar 

  33. L.S. Huang, X.W. Zhou, R. Xue, P.F. Xu, S.L. Wang, C. Xu, W. Zeng, Y. **ong, H.Q. Sang, and D. Liang, Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at mxene conductive network for high-efficient perovskite solar cells. Nano-Micro Lett. 12, 44 (2020). https://doi.org/10.1007/s40820-020-0379-5.

    Article  CAS  Google Scholar 

  34. Y. **ong, H.J. Li, W. Zeng, Y.M. Wang, X.N. Zhao, P.F. Fang, W.G. Hu, and L.R. Zheng, Lattice origin of few-layer edge-on MoS2@TiO2 octahedral clusters for piezoelectric enhancement. Appl. Surf. Sci. 588, 152942 (2022). https://doi.org/10.1016/j.apsusc.2022.152942.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0210003), Open Research Fund of National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University (No. AE201910, No. AE202001) and Open Research Fund of Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education (No. Fzxw2021026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Fang or **ongwei Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Y., Li, Y., Chen, C. et al. The Surface Structure Origin of Carbon Fiber with Enhanced Electrothermal Properties Prepared by Modification of Graphene Coating. J. Electron. Mater. 51, 4288–4298 (2022). https://doi.org/10.1007/s11664-022-09607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09607-6

Keywords

Navigation