Log in

Effects of Al Preflow on the Uniformity of an AlN Nucleation Layer and GaN Grown on Si (111) Substrate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the influence of Al preflow on the uniformity of an aluminum nitride (AlN) nucleation layer grown on Si substrate has been investigated herein, finding that increasing the gas flow rate appropriately during the preflow of aluminum can greatly improve the uniformity of dislocations, as well as the crystal quality and surface morphology of the nucleation layer. The full width at half maximum (FWHM) of the AlN (102) plane in the center, half of the radius and the edge decreases from 826 arcsec/897 arcsec/1196 arcsec to 691 arcsec/738 arcsec/900 arcsec, respectively. Moreover, the sheet resistance uniformity of aluminum gallium nitride/gallium nitride (AlGaN/GaN) grown on the optimized AlN layer is reduced from 6.66% to 2.84%, which is a significant improvement and beneficial to the improvement of the performance of GaN-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Wei, X. Yang, J. Shen, D. Liu, Z. Cai, C. Ma, X. He, J. Tang, S. Qi, F. Xu, X. Wang, W. Ge, and B. Shen, Al diffusion at AlN/Si interface and its suppression through substrate nitridation. Appl. Phys. Lett. 116, 232105 (2020).

    Article  CAS  Google Scholar 

  2. S. Tirelli, D. Marti, S. Haifeng, A.R. Alt, H. Benedickter, E.L. Piner, and C.R. Bolognesi, 107-GHz (Al, Ga)N/GaN HEMTs on silicon with improved maximum oscillation frequencies. IEEE Electron Device Lett. 31, 296 (2010).

    Article  CAS  Google Scholar 

  3. M. Umeno, T. Egawa, and H. Ishikawa, GaN-based optoelectronic devices on sapphire and Si substrates. Mater. Sci. Semicond. Process. 4, 459 (2011).

    Article  Google Scholar 

  4. D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate. Appl. Phys. Express 6, 026501 (2013).

    Article  Google Scholar 

  5. A.R. Boyd, S. Degroote, M. Leys, F. Schulte, O. Rockenfeller, M. Luenenbuerger, J.K. Germain, and M. Heuken, Growth of GaN/AlGaN on 200 mm diameter silicon (111) wafers by MOCVD. Phys. Status Solidi C 6, S1045 (2009).

    Article  Google Scholar 

  6. A. Dadgar, M. Poschenrieder, J. Bläsing, K. Fehse, A. Diez, and A. Krost, Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in-situ SixNy masking. Appl. Phys. Lett. 80, 3670 (2002).

    Article  CAS  Google Scholar 

  7. S. Tamariz, D. Martin, and N. Grandjean, AlN grown on Si (111) by ammonia-molecular beam epitaxy in the 900–1200 °C temperature range. J. Cryst. Growth 476, 58 (2017).

    Article  CAS  Google Scholar 

  8. L. Pan, X. Dong, Z. Li, W. Luo, and J. Ni, Influence of the AlN nucleation layer on the properties of AlGaN/GaN heterostructure on Si (111) substrates. Appl. Surf. Sci. 447, 512 (2018).

    Article  CAS  Google Scholar 

  9. K. Cheng, H. Liang, M.V. Hove, K. Geens, B.D. Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, J. Dekoster, J.I.D.A. Borniquel, S.W. Jun, and H. Chung, AlGaN/GaN/AlGaN Double heterostructures grown on 200 mm silicon (111) substrates with high electron mobility. Appl. Phys. Exp. 5, 011002 (2012).

    Article  Google Scholar 

  10. S. Arulkumaran, G.I. Ng, S. Vicknesh, H. Wang, K.S. Ang, J.P.Y. Tan, V.K. Lin, S. Todd, G.Q. Lo, and S. Tripathy, Direct current and microwave characteristics of sub-micron AlGaN/GaN high-electron-mobility transistors on 8-Inch Si (111) substrate. Jpn. J. Appl. Phys. 51, 111001 (2012).

    Article  Google Scholar 

  11. Y.-Q. Ni, Z.-Y. He, J. Zhong, Y. Yao, F. Yang, P. **ang, B.J. Zhang, and Y. Liu, Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers. Chin. Phys. B 22, 088104 (2013).

    Article  Google Scholar 

  12. A. Bose, D. Biswas, S. Hishiki, S. Ouchi, K. Kitahara, K. Kawamura, and A. Wakejima, Elimination of the low resistivity of Si substrates in GaN HEMTs by introducing a SiC intermediate and a thick nitride layer. IEEE Electron Device Lett. 41, 1480 (2020).

    Article  CAS  Google Scholar 

  13. K. Wang, Y. **ng, J. Han, K. Zhao, L. Guo, Y. Zhang, X. Deng, Y. Fan, and B. Zhang, Influence of the TMAl source flow rate of the high temperature AlN buffer on the properties of GaN grown on Si (111) substrate. J. Alloys Compd. 671, 435 (2016).

    Article  CAS  Google Scholar 

  14. R.F. **ang, Y.Y. Fang, J.N. Dai, L. Zhang, C.Y. Su, Z.H. Wu, C.H. Yu, H. **ong, C.Q. Chen, and Y. Hao, High quality GaN epilayers grown on Si (111) with thin nonlinearly composition-graded AlxGa1-xN interlayers via metal-organic chemical vapor deposition. J. Alloys Compd. 509, 2227 (2011).

    Article  CAS  Google Scholar 

  15. Y. Yang, P. **ang, M. Liu, W. Chen, Z. He, X. Han, Y. Ni, F. Yang, Y. Yao, Z. Wu, Y. Liu, and B. Zhang, Effect of compositionally graded AlGaN buffer layer grown by different functions of trimethylaluminum flow rates on the properties of GaN on Si (111) substrates. J. Cryst. Growth 376, 23 (2013).

    Article  CAS  Google Scholar 

  16. M. Haeberlen, D. Zhu, C. McAleese, M.J. Kappers, and C.J. Humphreys, Dislocation reduction in MOVPE grown GaN layers on (111) Si using SiNx and AlGaN layers. J. Phys. Conf. Ser. 209, 012017 (2010).

    Article  Google Scholar 

  17. Y. Li, W. Wang, Y. Lin, X. Li, L. Huang, Y. Zheng, Z. Zhang, and G. Li, Growth of high-quality AlGaN epitaxial films on Si substrates. Mater. Lett. 207, 133 (2017).

    Article  CAS  Google Scholar 

  18. Y. Sugawara, Y. Ishikawa, A. Watanabe, M. Miyoshi, and T. Egawa, Characterization of dislocations in GaN layer grown on 4-inch Si (111) with AlGaN/AlN strained layer superlattices. Jpn. J. Appl. Phys. 55, 05FB08 (2016).

    Article  Google Scholar 

  19. H.-J. Lee, S.-Y. Bae, K. Lekhal, T. Mitsunari, A. Tamura, Y. Honda, and H. Amano, Improved crystal quality of semipolar (10–13) GaN on Si (001) substrates using AlN/GaN superlattice interlayer. J. Cryst. Growth 454, 114 (2016).

    Article  CAS  Google Scholar 

  20. P. Dalapati, S. Urata, and T. Egawa, Investigation of AlGaN/GaN high electron mobility transistors on Silicon (111) substrates employing multi-stacked strained layer superlattice structures. Superlattice. Microst. 147, 106709 (2020).

    Article  CAS  Google Scholar 

  21. S.J. Lee, S.R. Jeon, J.W. Ju, J.H. Baek, J. Su, S.M. Lee, D.S. Lee, and C.R. Lee, Impact of Al pre-deposition layer on crystalline quality of GaN grown on Si (111) substrates. J. Nanosci. Nanotechnol. 19, 892 (2019).

    Article  CAS  Google Scholar 

  22. F. Lumbantoruan, Y.Y. Wong, and Y.H. Wu, Investigation of TMAl preflow to the properties of AlN and GaN film grown on Si (111) by MOCVD, IEEE-ICSE 2014 Proc (Malaysia: Kuala Lumpur, 2014).

    Google Scholar 

  23. Q. Bao, J. Luo, and C. Zhao, Mechanism of TMAl pre-seeding in AlN epitaxy on Si (111) substrate. Vacuum 101, 184–188 (2014).

    Article  CAS  Google Scholar 

  24. J. Cao, S. Li, G. Fan, Y. Zhang, S. Zheng, Y. Yin, J. Huang, and J. Su, The influence of the Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (111) substrate. J. Cryst. Growth 312, 2044–2048 (2010).

    Article  CAS  Google Scholar 

  25. P. Chen, R. Zhang, Z.M. Zhao, D.J. **, B. Shen, Z.Z. Chen, Y.G. Zhou, S.Y. **e, W.F. Lu, and Y.D. Zheng, Growth of high quality GaN layers with AlN buffer on Si (111) substrates. J. Cryst. Growth 225, 150–154 (2001).

    Article  CAS  Google Scholar 

  26. A.P. Lange, and S. Mahajan, Influence of trimethylaluminum predoses on the growth morphology, film-substrate interface, and microstructure of MOCVD-grown AlN on (111) Si. J. Cryst. Growth 511, 106–117 (2019).

    Article  CAS  Google Scholar 

  27. S.J. Bak, D.H. Mun, K.C. Jung, J.H. Park, H.J. Bae, I.W. Lee, J.S. Ha, T. Jeong, and T.S. Oh, Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD. Electron. Mater. Lett. 9, 367–370 (2013).

    Article  CAS  Google Scholar 

  28. Y.G. Kim, and W.-K. Jo, Photodeposited-metal/CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions. Int. J. Hydrogen Energ 42, 11356–11363 (2017).

    Article  CAS  Google Scholar 

  29. N. Izyumskaya, S.J. Liu, V. Avrutin, X.F. Ni, M. Wu, U. Ozgur, S. Metzner, F. Bertram, J. Christen, L. Zhou, D.J. Smith, and H. Morkoc, Epitaxial lateral overgrowth of non-polar GaN (1–100) on Si (112) patterned substrates by MOCVD. J. Cryst. Growth 314, 129 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61904139), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JM-366) and Wuhu and **dian University special fund for industry-university-research cooperation, (Grant No. XWYCXY-012020007).

Author information

Authors and Affiliations

Authors

Contributions

JM: Investigation, Writing-review&editing. YZ: Writing- review&editing, Resources. YY: Investigation. YL: Investigation. TZ: Data curation. QF: Methodology. ZB: Investigation. JZ: Validation. YH: Validation.

Corresponding authors

Correspondence to Yachao Zhang or **cheng Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests or personal relationships that may influence this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhang, Y., Yao, Y. et al. Effects of Al Preflow on the Uniformity of an AlN Nucleation Layer and GaN Grown on Si (111) Substrate. J. Electron. Mater. 51, 3342–3349 (2022). https://doi.org/10.1007/s11664-022-09560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09560-4

Keywords

Navigation