Log in

Cadmium Sulfide/Zinc Sulfide Core–Shell Nanocomposite-Based Microwave Notch Filter for Biomedical Imaging

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We experimentally demonstrate the workings of a cadmium sulfide/zinc sulfide core–shell nanoparticle-based microwave filter taking advantage of the planar microstrip filter design. The complex permittivity profile shows that the nonlinear dielectric switching remains both reversible and stable for all the cycles that correspond to second-order phase transition. The return loss, transmission loss, and phase shift response show accurate function of the novel as-designed filter across the wide frequency range of 500 MHz to 20 GHz. A notch generated at 11.85 GHz with a rejection level of −50.14 dB confirms the design of the microwave notch filter. A transmission dip appearing at 11.85 GHz is induced by Mie resonance. The observed phase shift of 178.19° at 9.51 GHz confirms the microwave notch generation. This as-designed compact and structurally simple notch filter is capable of wide frequency tuning along with sharp notch generation, paving its possible application as a microwave photonic filter in biomedical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, Nature 507, 341 (2014).

    Article  CAS  Google Scholar 

  2. I.C. Hunter, L. Billonet, B. Jarry, and P. Guillon, IEEE Trans. Microw. Theory Tech. 50, 794 (2002).

    Article  Google Scholar 

  3. A. Ben Hammadi, F. Haddad, M. Mhiri, S. Saad and K. Besbes, Int. J. RF Microw. Comput. Aided Eng. e21550 (2018)

  4. M. Saif Islam, and V.J. Logeeswaran, IEEE Commun. Mag. 48, 112 (2010).

    Article  Google Scholar 

  5. N. Margalit, C. **ang, S.M. Bowers, A. Bjorlin, R. Blum, and J.E. Bowers, Appl. Phys. Lett. 118, 220501 (2021).

    Article  CAS  Google Scholar 

  6. V. Zhurbenko ed., Passive Microwave Components and Antennas. (Rijeka: Sciyo, 2010).

    Google Scholar 

  7. Z. Wang, E. Gee Lim, Y. Tang, and M. Leach, Sci. World J. Article ID 147016 (2014)

  8. S. Kwon and S. Lee, Int. J. Biomed. Imaging Article ID 5054912 (2016)

  9. E.C. Fear, S.C. Hagness, P.M. Meaney, M. Okoniewski, and M.A. Stuchly, IEEE Microw. Mag. 3, 48 (2002).

    Article  Google Scholar 

  10. N.K. Nikolova, IEEE Microw. Mag. 12, 78 (2011).

    Article  Google Scholar 

  11. M. Klemm, J.A. Leendertz, D. Gibbins, I.J. Craddock, A. Preece, and R. Benjamin, IEEE Antennas Wirel. Propag. Lett. 8, 1349 (2009).

    Article  Google Scholar 

  12. J.C.Y. Lai, C.B. Soh, E. Gunawan, and K.S. Low, Prog. Electromagn. Res. M 16, 19 (2011).

    Article  Google Scholar 

  13. S.E. Jasim, M.A. Jusoh, Y.K. Yeow, and J. Rajan, Prog. Electromagn. Res. C 81, 63 (2018).

    Article  Google Scholar 

  14. D. Obeid, S. Sawsan, Z. Gheorghe, and Z. Ghaïs, Microw. Opt. Technol. Lett. 52, 192 (2010).

    Article  Google Scholar 

  15. R. Chandra, H. Zhou, I. Balasingham, and R.M. Narayanan, IEEE Trans. Biomed. Eng. 62, 1667 (2015).

    Article  Google Scholar 

  16. J. Devi, and P. Datta, J. Electron. Mater. 47, 3529 (2018).

    Article  CAS  Google Scholar 

  17. L.F. Chen, C.K. Ong, V.V. Varadan, and V.K. Varadan, Microwave Electronics Measurement and Materials Characterization (London: Wiley, 2004).

    Book  Google Scholar 

  18. T. Belhadj, N. Fourier-Lamer, and H. de Chanterac, IEEE Trans. Microw. Theory Tech. 38, 1 (1990).

    Article  Google Scholar 

  19. U. Kaatze, J. Chem. Eng. Data. 34, 371 (1989).

    Article  CAS  Google Scholar 

  20. T. Mosavirik, M. Soleimani, V. Nayyeri, S.H. Mirjahanmardi, and O.M. Ramahi, IEEE Trans. Instrum. Meas. 70, 1 (2021).

    Google Scholar 

  21. F. Tian, and Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 21, 929 (2014).

    Article  CAS  Google Scholar 

  22. K. Pasińska, A. Ciupa, A. Pikul, A. Gągor, A. Pietraszko, and A. Ciżman, J. Mater. Chem. C 8, 6254 (2020).

    Article  Google Scholar 

  23. M. Shete, M. Shaji, and M. Jaleel Akhtar, IEEE Sens. J. 13, 4706 (2013).

    Article  Google Scholar 

  24. X. Pan, H. Wang, D. Zhang, S. Xun, M. Ouyang, W. Fan, Y. Guo, Y. Wu, S. Huang, K. Bi, and M. Lei, PLoS ONE 11, 12 (2016).

    Google Scholar 

  25. W. Zhang, and R.A. Minasian, IEEE Photonics J. 4, 5 (2012).

    CAS  Google Scholar 

  26. P. Russer, and N. Fichtner, IEEE Microw. Mag. 11, 119 (2010).

    Article  Google Scholar 

  27. K.K. Adhikari, Y. Jung, H. Park, G. Cho, and N. Young, J. Nanomater. Article ID 810150 (2015)

  28. H. Abunahla, R. Gadhafi, B. Mohammad et al., Sci. Rep. 10, 13128 (2020).

    Article  CAS  Google Scholar 

  29. D. Sharmaa, and N. Khare, Curr. Appl. Phys. 20, 773 (2020).

    Article  Google Scholar 

  30. A. Duncan, T.L. Whitlock, M. Cope, and D.T. Delpy, SPIE 1888, 248 (1993).

    CAS  Google Scholar 

  31. B.J. Tromberg, B.O. Coquoz, J.B. Fishkin, T. Pham, E.R. Anderson, J. Buffer et al., Philos. Trans. R. Soc. Lond. B. Biol. Sci. 352, 661 (1997).

    Article  CAS  Google Scholar 

  32. https://www.edmundoptics.com/f/od-4-notch-filters/13946/

Download references

Acknowledgments

The authors thank the Microwave and Material Testing Laboratory, IIT Kanpur, Uttar Pradesh-208016, India, for microwave measurement and material characterization, and Gauhati University, Assam-781014, India, for device fabrication. The first author thanks the Department of Science and Technology, Government of India, for the grant received [DST WOS-A Grant No. SR/WOS-A/ET-1102/2015].

Funding

This work was supported by the Department of Science and Technology, Government of India, under Grant SR/WOS-A/ET-1102/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutika Devi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, J., Akhtar, M.J. & Datta, P. Cadmium Sulfide/Zinc Sulfide Core–Shell Nanocomposite-Based Microwave Notch Filter for Biomedical Imaging. J. Electron. Mater. 51, 888–899 (2022). https://doi.org/10.1007/s11664-021-09369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09369-7

Keywords

Navigation