Log in

High Radiative Recombination Rate of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with AlInGaN/AlInN/AlInGaN Tunnel Electron Blocking Layer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, an aluminum indium gallium nitride (AlInGaN)/aluminum indium nitride (AlInN)/aluminum indium gallium nitride (AlInGaN) tunnel electron blocking layer (EBL) is introduced instead of traditional EBL in aluminum gallium nitride (AlGaN)-based deep UV light-emitting diodes (DUV LEDs). The simulation results reveal that the internal quantum efficiency (IQE) and radiative recombination rate are impressively improved in the proposed DUV LED as compared to the conventional LED. This significant improvement is assigned to the uniform recombination of carriers in the active zone due to the reduction of lattice mismatching, which is the main cause of reducing the induced piezoelectric polarization field. Additionally, the tunnel EBL in our proposed structure also assists the hole transport into the active zone. As a result, not only is IQE improved, but also the efficiency droop is reduced significantly in our proposed device. This is attributed to the enhanced recombination of electron-hole pairs in the active region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, Semicond. Sci. Technol. 26, 014036 (2010).

    Article  Google Scholar 

  2. M. Usman, S. Malik, and M. Munsif, Luminescence 36, 294 (2021).

    Article  CAS  Google Scholar 

  3. M. Kneissl, and J. Rass, III-Nitride Ultraviolet Emitters (Springer, 2016).

    Book  Google Scholar 

  4. J. Tsao, S. Chowdhury, M. Hollis, D. Jena, N. Johnson, K. Jones, R. Kaplar, S. Rajan, C. Van de Walle, and E. Bellotti, Adv. Electron. Mater. 4, 1600501 (2018).

    Article  Google Scholar 

  5. J. Shakya, K. Knabe, K. Kim, J. Li, J. Lin, and H. Jiang, Appl. Phys. Lett. 86, 091107 (2005).

    Article  Google Scholar 

  6. S.L. Chuang, Physics of Photonic Devices (Wiley, 2010).

    Google Scholar 

  7. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, and C. Moe, Appl. Phys. Express 5, 082101 (2012).

    Article  Google Scholar 

  8. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, and J. Rass, Appl. Phys. Lett. 105, 051113 (2014).

    Article  Google Scholar 

  9. K. Tian, C. Chu, H. Shao, J. Che, J. Kou, M. Fang, Y. Zhang, W. Bi, and Z.-H. Zhang, Superlattices Microstruct. 122, 280 (2018).

    Article  CAS  Google Scholar 

  10. C. Chu, K. Tian, J. Che, H. Shao, J. Kou, Y. Zhang, Y. Li, M. Wang, Y. Zhu, and Z.-H. Zhang, Opt. Express 27, A620 (2019).

    Article  CAS  Google Scholar 

  11. Z. Ren, H. Yu, Z. Liu, D. Wang, C. **ng, H. Zhang, C. Huang, S. Long, and H. Sun, J. Phys. D Appl. Phys. 53, 073002 (2019).

    Article  Google Scholar 

  12. M. Usman, S. Malik, M. Hussain, H. Jamal, and M.A. Khan, Opt. Mater. 112, 110745 (2021).

    Article  CAS  Google Scholar 

  13. X. Fan, H. Sun, X. Li, H. Sun, C. Zhang, Z. Zhang, and Z. Guo, Superlattices Microstruct. 88, 467 (2015).

    Article  CAS  Google Scholar 

  14. M. Kneissl, T.-Y. Seong, J. Han, and H. Amano, Nat. Photonics 13, 233 (2019).

    Article  CAS  Google Scholar 

  15. M. Usman, M. Munsif, and A.-R. Anwar, Opt. Commun. 464, 125493 (2020).

    Article  CAS  Google Scholar 

  16. M. Usman, T. Jamil, S. Malik, and H. Jamal, Optik 232, 166528 (2021).

    Article  CAS  Google Scholar 

  17. T. Jamil, M. Usman, and H. Jamal, Mater. Res. Bull. 142, 111389 (2021).

    Article  CAS  Google Scholar 

  18. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status Solidi A 206, 1176 (2009).

    Article  CAS  Google Scholar 

  19. J. Chang, D. Chen, L. Yang, Y. Liu, K. Dong, H. Lu, R. Zhang, and Y. Zheng, Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  20. H. B. Ammar, (Université de Lille 1: 2017).

  21. R. Butté, J. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, and A. Castiglia, J. Phys. D Appl. Phys. 40, 6328 (2007).

    Article  Google Scholar 

  22. M.A. Laurent, S. Keller, and U.K. Mishra, Phys. Status Solidi A 216, 1800523 (2019).

    Article  Google Scholar 

  23. H. Morkoç, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth (Wiley, 2009).

    Google Scholar 

  24. T. Kinoshita, T. Obata, H. Yanagi, and S.-I. Inoue, Appl. Phys. Lett. 102, 012105 (2013).

    Article  Google Scholar 

  25. STR Group (SiLENSe) Web page [https://downloads.str-soft.com/index.php] Accessed Access Date Access Year|.

  26. Z.-H. Zhang, J. Kou, S.-W.H. Chen, H. Shao, J. Che, C. Chu, K. Tian, Y. Zhang, W. Bi, and H.-C. Kuo, Photonics Res. 7, B1 (2019).

    Article  CAS  Google Scholar 

  27. X. Chen, D. Wang, and G. Fan, J. Electron. Mater. 48, 2572 (2019).

    Article  CAS  Google Scholar 

  28. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B Condens. Matter 56, R10024 (1997).

    Article  CAS  Google Scholar 

  29. I. Vurgaftman, J.Á. Meyer, and L.Á. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank STR® for lending technical support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, T., Usman, M., Jamal, H. et al. High Radiative Recombination Rate of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with AlInGaN/AlInN/AlInGaN Tunnel Electron Blocking Layer. J. Electron. Mater. 50, 5612–5617 (2021). https://doi.org/10.1007/s11664-021-09086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09086-1

Keywords

Navigation