Log in

Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN)-on-diamond technology offers key parameters of high thermal conductivity, high power density, high electrical resistivity and small form factor at both the device and system levels, making GaN-on-diamond power amplifier devices very attractive for high-power radio-frequency (RF) applications, such as commercial base stations, satellite communications and defence applications. Current GaN-on-diamond integration technology involves either a diamond growth process or a diamond bonding process, both of which require precise interface engineering with appropriate interfacial layers. While such interfacial layers are of vital importance to make high-quality GaN-on-diamond integration possible, they also contribute to a large portion of the effective thermal boundary resistance (TBReff) at the interface, which has to be minimized to justify the benefit of GaN-on-diamond technology compared with the mainstream GaN on silicon carbide (SiC) technology. In this paper, we review the ongoing effort to develop interface engineering processes that position GaN-on-diamond as a promising technology for enabling the next generation of power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Bar-Cohen, J. Albrecht, and J. Maurer, in Technical Digest IEEE Compound Semiconductor Integrated Circuit Symposium CSIC (2011), pp. 1.

  2. V. Gambin, B. Poust, D. Ferizovic, M. Watanabe, and T. Dusseault, in Proceedings of Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Itherm (2016), pp. 1518.

  3. D. H. Altman, A. Gupta, and M. Tyhach, in ASME International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK, collocated ASME International Conference on Nanochannels, Microchannels, and Minichannels (2015).

  4. J. Ditri, J. Hahn, R. Cadotte, M. Mcnulty, and D. Luppa, in ASME Int. Tech. Conf. Exhib. Packag. Integr. Electron. Photonic Microsystems, InterPACK, collocated ASME Int. Conf. Nanochannels, Microchannels, Minichannels (2015).

  5. J. Ditri, M. K. Mcnulty, and S. Igoe, in Lester Eastman Conference on High Performance Devices, LEC (2014), pp. 1.

  6. A. Bar-Cohen, J. J. Maurer, and A. Sivananthan, in IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS (2015), pp. 1.

  7. J.W. Pomeroy, R.B. Simon, H. Sun, D. Francis, F. Faili, D.J. Twitchen, and M. Kuball, IEEE Electron Device Lett. 35, 1007 (2014).

    Article  CAS  Google Scholar 

  8. H. Sun, R.B. Simon, J.W. Pomeroy, D. Francis, F. Faili, D.J. Twitchen, and M. Kuball, Appl. Phys. Lett. 106, 1906 (2015).

    Google Scholar 

  9. T. Gerrer, A. Graff, M. Simon-Najasek, H. Czap, T. Maier, F. Benkhelifa, S. Mueller, C. Nebel, P. Waltereit, and R. Quay, Appl. Phys. Lett. 114, 252103 (2019).

    Article  Google Scholar 

  10. L. Yates, J. Anderson, X. Gu, C. Lee, T. Bai, M. Mecklenburg, T. Aoki, M.S. Goorsky, M. Kuball, E.L. Piner, and S. Graham, ACS Appl. Mater. Interfaces 10, 24302 (2018).

    Article  CAS  Google Scholar 

  11. H. Guo, Y. Kong, and T. Chen, in Proceedings of Electronic Components and Technology Conference (2019), pp. 1842.

  12. H. Guo, Y. Kong, P. Han, and T. Cheng, Guti Dianzixue Yanjiu Yu **zhan/Res. Progress Solid State Electron. 38, 316 (2018).

    Google Scholar 

  13. C.J.H. Wort, C.G. Sweeney, M.A. Cooper, G.A. Scarsbrook, and R.S. Sussmann, Diamond Relat. Mater. 3, 1158 (1994).

    Article  CAS  Google Scholar 

  14. J. D. Blevins, G. D. Via, K. Sutherlin, S. Tetlak, B. Poling, R. Gilbert, B. Moore, J. Hoelscher, B. Stumpff, A. Bar-Cohen, J. J. Maurer, and A. Kane, in Proceedings of CS MANTECH—International Conference on Compound Semiconductor Manufacturing Technology (2014), pp. 105.

  15. D. Francis, J. Wasserbauer, F. Faili, D. Babic, F. Ejeckam, W. Hong, P. Specht, and E. Weber, in International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH (2007), pp. 14.

  16. P.C. Chao, K. Chu, C. Creamer, J. Diaz, T. Yurovchak, M. Shur, R. Kallaher, C. McGray, G.D. Via, and J.D. Blevins, IEEE Trans. Electron Devices 62, 3658 (2015).

    Article  CAS  Google Scholar 

  17. W. Yoon**, C. Jungwan, D. Agonafer, M. Asheghi, and K.E. Goodson, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 737 (2015).

    Article  Google Scholar 

  18. M. Mccarthy, T. B. Peters, J. Allison, A. D. Espinosa, and E. N. Wang, in IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm (2010), pp. 1.

  19. D. Devoto, P. Paret, M. Mihalic, S. Narumanchi, A. Barcohen, and K. Matin, in Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2014), pp. 409.

  20. A. Bar-Cohen, K. Matin, and S. Narumanchi, J. Electron. Packag. 137, 803 (2015).

    Google Scholar 

  21. K. Bloschock and A. Bar-Cohen, in Proceedings of SPIE International Society for Optical Engineering (2012), pp. 84050I.

  22. J. Cho, Y. Won, D. Francis, M. Asheghi, and K. E. Goodson, in Technical Digest IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC (2014), pp. 1.

  23. T. Liu, Y. Kong, L. Wu, H. Guo, J. Zhou, C. Kong, and T. Chen, IEEE Electron Device Lett. 38, 1417 (2017).

    Article  CAS  Google Scholar 

  24. J. Zhao, Semicond. Technol. 44, 321 (2019).

    CAS  Google Scholar 

  25. K.A. Filippov, and A.A. Balandin, MRS Internet J. Nitride Semicond. Res. 8, 4 (2003).

    Article  Google Scholar 

  26. R.S. Prasher, and P.E. Phelan, J. Heat Transf. 123, 105 (2001).

    Article  CAS  Google Scholar 

  27. A. Sarua, H. Ji, K.P. Hilton, D.J. Wallis, M.J. Uren, T. Martin, and M. Kuball, IEEE Trans. Electron Devices 54, 3152 (2007).

    Article  CAS  Google Scholar 

  28. Y. Wang, J.Y. Park, Y.K. Koh, and D.G. Cahill, J. Appl. Phys. 108, 3507 (2010).

    Google Scholar 

  29. D. Altman, D. Altman, M. Tyhach, J. Mcclymonds, S. Kim, and S. Bernstein, in Proceedings of Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2014), pp. 1199.

  30. R.J. Stevens, A.N. Smith, and P.M. Norris, Rev. Sci. Instrum. 77, 285 (2006).

    Article  Google Scholar 

  31. Y. Zhou, J. Anaya, J. Pomeroy, H. Sun, X. Gu, A. **e, E. Beam, M. Becker, T.A. Grotjohn, C. Lee, and M. Kuball, ACS Appl. Mater. Interfaces 9, 34416 (2017).

    Article  CAS  Google Scholar 

  32. H. Sun, D. Liu, J. W. Pomeroy, D. Francis, and M. Kuball, in Proceedings of CS MANTECH—International Conference on Compound Semiconductor Manufacturing Technology (2016), pp. 201.

  33. H. Sun, J.W. Pomeroy, R.B. Simon, D. Francis, F. Faili, D.J. Twitchen, and M. Kuball, IEEE Electron Device Lett. 37, 621 (2016).

    Article  CAS  Google Scholar 

  34. J. Cho, Y. Li, W.E. Hoke, D.H. Altman, M. Asheghi, and K.E. Goodson, Phy. Rev. B 89, 5301 (2014).

    Google Scholar 

  35. Y. Won, J. Cho, D. Agonafer, M. Asheghi, and K. E. Goodson, in Technical Digest IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC (2013), pp. 1.

  36. Z. Cheng, F. Mu, L. Yates, T. Suga, and S. Graham, ACS Appl. Mater. Interfaces 12, 8376 (2020).

    Article  CAS  Google Scholar 

  37. J. Anaya, H. Sun, J. Pomeroy, and M. Kuball, in Proceedings of Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Itherm (2016), pp. 1558.

  38. K. K. Chu, P. C. Chao, J. A. Diaz, T. Yurovchak, C. T. Creamer, S. Sweetland, R. L. Kallaher, and C. McGray, in Lester Eastman Conference on High Performance Devices, LEC (2014), pp. 1.

  39. J.W. Pomeroy, M. Bernardoni, D.C. Dumka, D.M. Fanning, and M. Kuball, Appl. Phys. Lett. 104, 3513 (2014).

    Article  Google Scholar 

  40. A. Dussaigne, M. Gonschorek, M. Malinvemi, M.A. Py, D. Martin, A. Mouti, P. Stadelmann, and N. Grandjean, Jpn. J. Appl. Phys. 49, 1212 (2010).

    Article  Google Scholar 

  41. K. Hirama, M. Kasu, and Y. Taniyasu, IEEE Electron Device Lett. 33, 513 (2012).

    Article  CAS  Google Scholar 

  42. T. Gerrer, V. Cimalla, P. Waltereit, S. Müller, F. Benkhelifa, T. Maier, H. Czap, O. Ambacher, and R. Quay, Int. J. Microw. Wirel. Technol. 10, 666 (2018).

    Article  Google Scholar 

  43. Z. Yuan, W. Gao, X. Tang, and Q. **ng, Semicond. Optoelectron. 24, 377 (2003).

    CAS  Google Scholar 

  44. X. Jia, J.-J. Wei, Y. Huang, S. Shao, K. An, Y. Kong, L. Wu, Z. Qi, J. Liu, L. Chen, and C. Li, J. Mater. Res. 35, 508 (2020).

    Article  CAS  Google Scholar 

  45. M.D. Smith, J.A. Cuenca, D.E. Field, Y.-C. Fu, C. Yuan, F. Massabuau, S. Mandal, J.W. Pomeroy, R.A. Oliver, M.J. Uren, K. Elgaid, O.A. Williams, I. Thayne, and M. Kuball, AIP Adv. 10, 035306 (2020).

    Article  CAS  Google Scholar 

  46. D.C. Dumka, D. Francis, T.M. Chou, F. Ejeckam, and F. Faili, Electron. Lett. 49, 1298 (2013).

    Article  CAS  Google Scholar 

  47. D.E. Field, J.A. Cuenca, M. Smith, S.M. Fairclough, F.C.P. Massabuau, J.W. Pomeroy, O. Williams, R.A. Oliver, I. Thayne, and M. Kuball, ACS Appl. Mater. Interfaces 12, 54138 (2020).

    Article  CAS  Google Scholar 

  48. D. Liu, D. Francis, F. Faili, C. Middleton, J. Anaya, J.W. Pomeroy, D.J. Twitchen, and M. Kuball, Scr. Mater. 128, 57 (2017).

    Article  CAS  Google Scholar 

  49. X. Jia, J.J. Wei, Y. Kong, C.M. Li, J. Liu, L. Chen, F. Sun, and X. Wang, Surf. Interface Anal. 51, 783 (2019).

    Article  CAS  Google Scholar 

  50. P.W. May, H.Y. Tsai, W.N. Wang, and J.A. Smith, Diamond Relat. Mater. 15, 526 (2006).

    Article  CAS  Google Scholar 

  51. M. Seelmann-Eggebert, P. Meisen, F. Schaudel, P. Koidl, A. Vescan, and H. Leier, Diamond Relat. Mater. 10, 744 (2001).

    Article  CAS  Google Scholar 

  52. M. Tyhach, D. Altman, S. Bernstein, R. Korenstein, J. Cho, K. E. Goodson, D. Francis, F. Faili, F. Ejeckam, S. Kim, and S. Graham, in Lester Eastman Conference on High Performance Devices, LEC (2014), pp. 1.

  53. X. Gu, C. Lee, J. **e, E. Beam, M. Becker, T. Grotjohn, J. Anaya, and M. Kuball, in US DOD (2016), pp. 405.

  54. S. Mandal, C. Yuan, F. Massabuau, J.W. Pomeroy, J. Cuenca, H. Bland, E. Thomas, D. Wallis, T. Batten, D. Morgan, R. Oliver, M. Kuball, and O.A. Williams, ACS Appl. Mater. Interfaces 11, 40826 (2019).

    Article  CAS  Google Scholar 

  55. A. Siddique, R. Ahmed, J. Anderson, M. Nazari, L. Yates, S. Graham, M. Holtz, and E.L. Piner, ACS Appl. Electron. Mater. 1, 1387 (2019).

    Article  CAS  Google Scholar 

  56. J. Cho, Z. Li, E. Bozorg-Grayeli, T. Kodama, D. Francis, F. Ejeckam, F. Faili, M. Asheghi, and K.E. Goodson, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 79 (2013).

    Article  CAS  Google Scholar 

  57. W. Zhai, J. Zhang, X. Chen, R. Bu, H. Wang, and X. Hou, AIP Adv. 7, 095105 (2017).

    Article  Google Scholar 

  58. K. K. Chu, P. C. Chao, J. A. Diaz, T. Yurovchak, B. J. Schmanski, C. T. Creamer, S. Sweetland, R. L. Kallaher, C. McGray, G. D. Via, and J. D. Blevins, in IEEE Compound Semiconductor Integrated Circuit Symposium, CSICS (2015), pp. 1.

  59. P. C. Chao, K. Chu, and C. Creamer, in International Conference on Compound Semiconductor Manufacturing Technology, CS MANTECH (2013), pp. 179.

  60. P.C. Chao, K. Chu, J. Diaz, C. Creamer, S. Sweetland, R. Kallaher, C. McGray, G.D. Via, and J. Blevins, MRS Adv. 1, 147 (2016).

    Article  CAS  Google Scholar 

  61. K. K. Chu, T. Yurovchak, P. C. Chao, and C. T. Creamer, in Technical Digest IEEE Compound Semiconductor Integrated Circuit Symposium, CSIC (2013), pp. 1.

  62. J. Cho, K. K. Chu, P. C. Chao, C. Mcgray, and K. E. Goodson, in Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (2014), pp. 1186.

  63. F. Mu, R. He, and T. Suga, Scr. Mater. 150, 148 (2018).

    Article  CAS  Google Scholar 

  64. F. Mu and T. Suga, in Proceedings of International Conference on Electronic Packaging Technology, ICEPT (2018), pp. 521.

  65. F. Mu and T. Suga, in Proceedings of international workshop on low temperature bonding for 3D integration, LTB-3D (2019), pp. 87.

  66. K. Wang, K. Ruan, W. B. Hu, S. L. Wu, and H. X. Wang, in Proceedings of International Workshop on Low Temperature Bonding for 3D Integration, LTB-3D (2019), pp. 22.

Download references

Acknowledgments

The authors acknowledge funding support from the National Natural Science Foundation of China under Funding Number 62074033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ng Gu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Zhang, Y., Hua, B. et al. Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices. Journal of Elec Materi 50, 4239–4249 (2021). https://doi.org/10.1007/s11664-021-09011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09011-6

Keywords

Navigation