Log in

Effects of Trace Elements Ag, Bi and Ni on Solid–Liquid Electromigration Interface Diffusion in Solder Joints

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper studies the influence of trace elements Ag, Bi and Ni on the solid-liquid electromigration (S-L EM) interface diffusion behavior in solder joints. The solder joint Sn0.7Ag0.5Cu (SAC0705), Sn3.0Ag0.5Cu (SAC305) and Sn0.7Ag0.5Cu3.5Bi0.05Ni (SAC0705+BiNi) are taken as the research object. The interfacial intermetallic compound (IMC) growth and evolution behavior were studied after S-L EM. Meanwhile, the influences of the trace elements Ag, Bi and Ni on interface diffusion were analyzed in the solder joint during S-L EM. The results show that the interfacial IMC grains can be refined by adding trace elements Ag, Bi and Ni in solder during reflowing. The addition of Bi and Ni changed the composition and shape of the interfacial IMC. After adding Bi and Ni to the SAC0705 solder alloy, the interfacial IMC changed from polygonal cylindrical Cu6Sn5 to ellipsoidal (Cu,Ni)6Sn5. The addition of Ag, Bi and Ni inhibited the growth of the cathodic interfacial IMC and improved the resistance to the S-L EM performance of the solder joints. Compared with Cu/SAC0705/Cu solder joints, the cathodic interfacial IMC grain size of Cu/SAC0705+BiNi/Cu solder joint decreased by 87%, and the thickness of the cathodic Cu substrate decreased by 29% after S-L EM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.M. Waldrop, Nature News 530, 144 (2016).

    Article  CAS  Google Scholar 

  2. C.M. Tsai, Y.L. Lin, J.Y. Tsai, and Y.L. Lay, J. Electron. Mater. 35, 1005 (2006).

    Article  CAS  Google Scholar 

  3. J.R. Cahoon, Metall. Mater. Trans. 28, 583 (1997).

    Article  Google Scholar 

  4. J.R. Huang, C.M. Tsai, Y.W. Lin, and C.R. Kao, J. Mater. Res. 23, 250 (2008).

    Article  CAS  Google Scholar 

  5. X. Gu and Y.C. Chan, Electron. Mater. 37, 1721 (2008).

    Article  CAS  Google Scholar 

  6. Z.J. Zhang and M.L. Huang, J. Mater. Sci. 54, 7975 (2019).

    Article  CAS  Google Scholar 

  7. M.L. Huang, Q. Zhou, N. Zhao, X.Y. Liu, and Z.J. Zhang, J. Mater. Sci. 49, 1755 (2014).

    Article  CAS  Google Scholar 

  8. M.L. Huang, Z.J. Zhang, N. Zhao, and F. Yang, J. Alloy. Compd. 619, 667 (2015).

    Article  CAS  Google Scholar 

  9. Z.J. Zhang and M.L. Huang, Acta Metall. Sin 53, 592 (2017).

    CAS  Google Scholar 

  10. B. Liu, Y. Tian, C. Wang, R. An, and C. Wang, Intermetallics 80, 26 (2017).

    Article  CAS  Google Scholar 

  11. J. Feng, C. Hang, Y. Tian, B. Liu, and C. Wang, Sci. Rep. 8, 1775 (2018).

    Article  Google Scholar 

  12. H. Qiu, X. Hu, X. Jiang, and Q. Li, Mater. Lett. 256, 126609 (2019).

    Article  CAS  Google Scholar 

  13. H. Gao, F. Wei, Y. Sui, J. Qi, Y. He, and Q. Meng, J. Mater. Sci. 30, 2186 (2019).

    CAS  Google Scholar 

  14. J. Kim, K.H. Jung, J.H. Kim, C.J. Lee, and S.B. Jung, J. Alloy. Compd. 775, 581 (2019).

    Article  CAS  Google Scholar 

  15. Y.H. Ko, K. Son, G. Kim, Y.B. Park, D.Y. Yu, J. Bang, and T.S. Kim, J. Mater. Sci-Mater. El. 30, 2334 (2019).

    Article  CAS  Google Scholar 

  16. F.J. Wang, L.T. Liu, L.L. Zhou, J.H. Wang, M.F. Wu, and X.J. Wang, Mater. Trans. 58, 1593 (2017).

    Article  CAS  Google Scholar 

  17. M.N. Bashir, A.S.M.A. Haseeb, A.Z.M.S. Rahman, M.A. Fazal, and C.R. Kao, J. Mater. Sci. 50, 6748 (2015).

    Article  CAS  Google Scholar 

  18. T.W. Hu, Y. Li, Y.C. Chan, and F.S. Wu, Microelectron. Reliab. 55, 226 (2015).

    Google Scholar 

  19. M.N. Bashir, A.S.M.A. Haseeb, A.Z.M.S. Rahman, and M.A. Fazal, J. Mater. Sci. Technol. 32, 1129 (2016).

    Article  CAS  Google Scholar 

  20. Y.W. Lin, J.H. Ke, H.Y. Chuang, Y.S. Lai, and C.R. Kao, J. Appl. Phys. 107, 073516 (2010).

    Article  Google Scholar 

  21. J.H. Ke, H.Y. Chuang, W.L. Shih, and C.R. Kao, Acta. Mater. 60, 2082 (2012).

    Article  CAS  Google Scholar 

  22. C.E. Ho, S.C. Yang and C.R. Kao, J. Mater. Sci-Mater. El. 18, 155 (2007).

    Article  CAS  Google Scholar 

  23. P.S. Ho and T. Kwok, Electromigration in metalsRep. Prog. Phys. 52, 301 (1989).

    Article  CAS  Google Scholar 

  24. J.H. Ke, H.Y. Chuang, W.L. Shih, and C.R. Kao, Acta Mater. 60, 2082 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Qiqihar Science and Technology Project (GYGG-201909), the Young Core Foundation of Heilongjiang Department of Education (135309374), the Basic Scientific Research Business Expense Research Project of Heilongjiang Provincial Colleges and Universities (135409102), and National Natural Science Foundation of China (51174069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, Z., Li, C. et al. Effects of Trace Elements Ag, Bi and Ni on Solid–Liquid Electromigration Interface Diffusion in Solder Joints. J. Electron. Mater. 50, 5312–5317 (2021). https://doi.org/10.1007/s11664-021-08942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08942-4

Keywords

Navigation