Log in

Reliability of Flip-Chip Filaments with Different Color Temperatures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Light-emitting diode (LED) lamps with different color temperatures have been widely used for various applications. Compared with LED filaments having formal vertical structures, flip-chip LED filaments have a simple structure, better heat dissipation effects, and can be formed into various shapes. In this regard, to investigate the difference in the reliability of flip-chip LED filaments with different color temperatures, this study designed and conducted three aging tests (a xenon lamp aging test, a high temperature–high humidity test, and a thermal cycling test) to simulate the application of the filaments in three outdoor environments. The luminous efficacy, CIE chromaticity coordinates, color temperature, and other indicators of the filaments were obtained before and after aging. The results showed that the high temperature–high humidity environment had the greatest impact on the filament. Particularly, the filaments with color temperatures of 4000 K and 5000 K experienced significant changes under various indicators, confirming their sensitivity to this environment. Meanwhile, the filament with a color temperature of 2700 K exhibited the best reliability. After three kinds of aging tests, the luminous efficacy of the 2700 K filaments decreased by 1.9%, 15.15%, and 0.3%, respectively, with minimal changes in various indicators, indicating their suitability for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Jiang, J. Zou, C. Zheng, M.M. Shi, W.B. Li, Y.M. Liu, B. Guo, J. Liu, H. Liu, and X. Yin, Appl. Sci. 8, 1940 (2018).

    Article  Google Scholar 

  2. F. Zheng, J. Zou, B.B. Yang, Y. Zhou, M.M. Shi, Y.M. Liu, H.Y. Zhou, X.L. Qian, Z.Z. Liu, and Y.S. Shen, Optik 261, 17254 (2019).

    Google Scholar 

  3. W. Wang, J. Zou, Q.Y. Zheng, Y.F. Li, B.B. Yang, M.M. Shi, Y. Li, X.Y. Li, C.Y. Zhang, C. Li, and D.F. Chem, Appl. Sci. 10, 1373 (2020).

    Article  Google Scholar 

  4. C.Y. Guan, J. Zou, Q.C. Chen, M.M. Shi, and B.B. Yang, Appl. Sci. 10, 47 (2020).

    Article  CAS  Google Scholar 

  5. X.L. Qian, J. Zou, M.M. Shi, B.B. Yang, Y. Li, Z.M. Wang, Y.M. Liu, Z.Z. Liu, and F. Zheng, Front. Optoelectron. China. 12, 249 (2019).

    Article  Google Scholar 

  6. D. Raul, and K. Ghosh, Lighting Res. Technol. 51, 1249 (2019).

    Article  Google Scholar 

  7. S.P. Ying, C.P. Wang, Y.C. Su, and T.L. Chang, Microelectron. Eng. 160, 1 (2016).

    Article  CAS  Google Scholar 

  8. F.J. Arques-Orobon, N. Nunez, M. Vazquez, C. Segura-Antunez, and V. Gonzalez-Posadas, SolidState Electron. 111, 111 (2015).

    Article  CAS  Google Scholar 

  9. Q. Chen, R. Hu, and X.B. Luo, Microelectron. Reliab. 17, 51 (2017).

    Article  Google Scholar 

  10. J. Hao, L. **g, H.L. Ke, Y. Wang, and Z.J. Xu, Front. Inform. Technol. Elect. Eng. 18, 1197 (2017).

    Article  Google Scholar 

  11. Y. Liu, J. Zou, B. Yang, W. Li, M. Shi, Y. Han, Z. Wang, M. Li, and N. Jiang, Mater. Technol. 33, 22 (2017).

    Article  Google Scholar 

  12. B.B. Yang, J. Zou, M.M. Shi, F.C. Wang, Y. Li, W.B. Li, L. Yang, and Y.J. Lin, J. Mater. Sci.-Mater. Electron. 28, 4075 (2017).

    Article  CAS  Google Scholar 

  13. J. Lv, C. Zheng, Q. Chen, S. Zhou, and S. Liu, Phys. Status Solidi. 213, 3150 (2016).

    Article  CAS  Google Scholar 

  14. S. Pimputkar, J. Speck, S. DenBaars, and S. Nakamura, Nat. Photonics. 3, 180 (2009).

    Article  CAS  Google Scholar 

  15. M. Kneissl, T.Y. Seong, J. Han, and H. Amano, Nat. Photonics. 13, 233 (2019).

    Article  CAS  Google Scholar 

  16. J. Magnien, L. Mitterhuber, J. Rosc, F. Schrank, S. Hörth, M. Hutter, S. Defregger, and E. Kraker, Microelectron. Reliab. 82, 84 (2018).

    Article  Google Scholar 

  17. J.J. Fan, J.W. Cao, C.H. Yu, C. Qian, X.J. Fan, and G.Q. Zhang, Microelectron. Reliab. 84, 140 (2018).

    Article  CAS  Google Scholar 

  18. K. R. Shailesh, C. P. Kurian, S. G. Kini. Lighting Res. Technol. 0, 1–9 (2017).

  19. H. Baumgartner, D. Renoux, P. Karha, T. Poikonen, T. Pulli, E. Ikonen. Lighting Res. Technol. 0, 1–13 (2015).

  20. X. P. Li, L. Chen, M. Chen. IEEE Int. Conf. Qual. Reliab. IEEE. 63 (2011).

  21. S. Zhang, Microelectron. Reliab. 55, 2678 (2015).

    Article  CAS  Google Scholar 

  22. N. Gao, W. Liu, Z. Yan, and Z.F. Wang, Opt. Mater. 35, 567 (2013).

    Article  CAS  Google Scholar 

  23. L. Escobar, and W. Meeker, Stat. Sci. 21, 552 (2006).

    Article  Google Scholar 

  24. B.B. Yang, J. Zou, F.C. Wang, C.Y. Zhang, J.Y. Xu, L. Li, and L.H. Sun, J. Mater. Sci. Mater. Electron. 27, 3376 (2016).

    Article  CAS  Google Scholar 

  25. H.K. Yang, H.M. Noh, B.K. Moon, J.H. Jeong, and S.S. Yi, Ceram. Int. 40, 12503 (2014).

    Article  CAS  Google Scholar 

  26. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

  27. M. Lopez, F. Sacconi, M.A.D. Maur, A. Pecchia, and A.D. Carlo, Opt. Quantum Electron. 44, 89 (2012).

    Article  CAS  Google Scholar 

  28. M. Alimoradi Jazi, T. Meisch, M. Klein, and F. Scholz, J. Cryst. Growth 429, 13 (2015).

    Article  CAS  Google Scholar 

  29. D. Liu, H. Yang, and P. Yang, Microelectron. Reliab. 54, 926 (2014).

    Article  Google Scholar 

  30. W. Nelson, Accelerated Testing: Statistical Models, Test Plans and Data Analyses (New York: Wiley, 1990).

    Book  Google Scholar 

  31. X.B. Zhan, J.Y. Zhang, X.L. Wang, and J. Cheng, Procedia Eng. 27, 687 (2012).

    Article  Google Scholar 

  32. M.Y. Mehr, W.D.V. Driel, S. Koh, and G.Q. Zhang, Microelectron. Reliab. 54, 2440 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61901270) and the Science and Technology Planning Project of Zhejiang Province, China (2018C01046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojiang Shang or Jun Zou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Shang, Z., Zhu, Y. et al. Reliability of Flip-Chip Filaments with Different Color Temperatures. Journal of Elec Materi 50, 4261–4271 (2021). https://doi.org/10.1007/s11664-021-08864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08864-1

Keywords

Navigation