Log in

Interfacial Reactions in Ni/Se-Sn, Ni/Se-Te, Ni/Sn-Te and Ni/Se-Sn-Te Couples

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

SnSe-, SnTe- and Se-Sn-Te-based alloys are important materials for thermoelectric and optical recording applications and Ni is highly recommended as barrier layer material. In this study, the interfacial reactions in Ni/SnSe, Ni/SexTe1−x, Ni/SnTe, and Ni/SnTe0.9Se0.1 are systematically investigated to provide fundamental understanding. The substrates are prepared with pure constituent elements and electroplated with a layer of Ni. The reaction couples are heat-treated, and their reaction phases are determined. Based on assessment of the literature results, the phase equilibria isothermal sections of the related material systems are proposed. The reaction paths in these couples are determined and illustrated with the proposed isothermal sections. The reaction paths in the Ni/SnSe couple reacted at 250°C and 300°C are both Ni/Ni3Sn/Ni3Sn2/NiSe/Ni5.62SnSe2/Ni3SnSe/ NiSnSe/SnSe. Both NiSnSe and Ni3SnSe are likely metastable ternary phases formed by rapid diffusion of Ni atoms into the SnSe substrate. The reaction path in the Ni/SexTe1−x couples reacted at 200°C is Ni/Ni3Te2/τ/SexTe1−x and in the Ni/SnTe couples reacted at 400°C is Ni/Ni3Sn/Ni3Sn2/Ni5.78SnTe2/Ni3SnTe2/SnTe. In the Ni/SnTe0.9Se0.1 couple reacted at 400°C, the reaction path is the same as that of Ni/SnTe. The reaction rates decrease with lower reaction temperatures, and the reaction zone grows thicker with longer reaction time. Based on the morphology and reaction phase sequences, it is concluded Ni is the fastest diffusion species in the diffusion couples among Ni, Se, Sn and Te.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. S.M. Lélé, World Dev. (1991). https://doi.org/10.1016/0305-750x(91)90197-p

    Article  Google Scholar 

  2. B. Prindle, M. Eldridge, M. Eckhardt, A. Frederick, The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy, ACEEE Rep. #E074, (2007).

  3. D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M. Martin- Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A.I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles, and M. Caironi, Thermoelectrics: from history: a window to the future. Mater: Sci. Eng. R (2019). https://doi.org/10.1016/j.mser.2018.09.001

  4. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2013.12.053

    Article  Google Scholar 

  5. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. (2012). https://doi.org/10.1039/C1EE02497C

    Article  Google Scholar 

  6. W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, and Z. Wang, Adv. Sci. (2018). https://doi.org/10.1002/advs.201700602

    Article  Google Scholar 

  7. V.Q. Nguyen, J. Kim, and S. Cho, J. Korean Phys. Soc. (2018). https://doi.org/10.3938/jkps.72.841

    Article  Google Scholar 

  8. R. Moshwan, L. Yang, J. Zou, and Z.-G. Chen, Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201703278

    Article  Google Scholar 

  9. J.-Y. Cho, M. Siyar, W.C. **, E. Hwang, S.-H. Bae, S.-H. Hong, M. Kim, and C. Park, Mater. (2019). https://doi.org/10.3390/ma12233854

    Article  Google Scholar 

  10. M. Hong, Z.-G. Chen, L. Yang, T.C. Chasapis, S.-D. Kang, Y. Zou, G.J. Auchterlonie, M.G. Kanatzidis, G.J. Snyder, and J. Zou, J. Mater. Chem. A (2017). https://doi.org/10.1039/C7TA02677C

    Article  Google Scholar 

  11. H. Ju, D. Park, K. Kim, and J. Kim, Org. Electron. (2019). https://doi.org/10.1016/j.orgel.2019.05.017

    Article  Google Scholar 

  12. S. Chen, K. Cai, and W. Zhao, Phys. B (2012). https://doi.org/10.1016/j.physb.2012.06.041

    Article  Google Scholar 

  13. M. Terao, T. Nishida, Y. Miyauchi, T. Kaku, S. Horigome, and Y. Sugita, Jpn. J. Appl. Phys. (1989). https://doi.org/10.1143/JJAP.28.804

    Article  Google Scholar 

  14. F. Abdel-Wahab, Physica (2011). https://doi.org/10.1016/j.physb.2010.09.048

    Article  Google Scholar 

  15. H.-X. Mi, M.-X. Wu, S. Cao, Z.-Y. Huang, L. Han, and J. Xu, Effect of solder and barrier layer elements on the thermoelectric properties of Bi0.5Sb1.5Te3 (Mater: Res. Express, 2019). https://doi.org/10.1088/2053-1591/ab3cd5

    Book  Google Scholar 

  16. G. Tan, M. Ohta, and M.G. Kanatzidis, Philos. Trans. R. Soc. A (2019). https://doi.org/10.1098/rsta.2018.0450

    Article  Google Scholar 

  17. J. Yoon, S. Bae, H.-S. Sohn, I. Son, K. Kim, T. Kyung, and Y.-W. Ju, J. Nanosci. Nanotechnol. (2018). https://doi.org/10.1166/jnn.2018.15676

    Article  Google Scholar 

  18. S.W. Chen, T.R. Yang, C.Y. Wu, H.W. Hsiao, H.S. Chu, J.D. Huang, and T.W. Liou, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.06.207

    Article  Google Scholar 

  19. T.Y. Lin, C.N. Liao, and A.T. Wu, J. Electron. Mater. (2012). https://doi.org/10.1007/s11664-011-1740-8

    Article  Google Scholar 

  20. H.-J. Wu, A.-T. Wu, P.-C. Wei, and S.-W. Chen, Mater. Res. Lett. 6, 244 (2018). https://doi.org/10.1080/21663831.2018.1436092

    Article  CAS  Google Scholar 

  21. S.W. Chen, Z.W. Liu, H.S. Chu, and Z.Y. Huang, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.09.261

    Article  Google Scholar 

  22. B. Predel, Ni-Se, Phase Equilibria (Springer, Berlin: Crystallographic and Thermodynamic Data of Binary Alloys, 1998).

    Google Scholar 

  23. S.W. Chen, Z.-W. Liu, H.S. Chu, and Z.Y. Huang, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.09.261

    Article  Google Scholar 

  24. J. Liua, C. Guoa, C. Lia, and Z. Dua, Int. J. Mater. Res. (2013). https://doi.org/10.3139/146.110827

    Article  Google Scholar 

  25. Y. Qiu, Y. Luo, X. Hu, Y. Li, and X. Jiang, Trans. Indian Inst. Met. (2019). https://doi.org/10.1007/s12666-018-1515-5

    Article  Google Scholar 

  26. C.-M. Arvhult, C. Guéneau, S. Gossé, and M. Selleby, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03689-0

    Article  Google Scholar 

  27. S.-W. Chen, T.-R. Yang, H.-W. Hsiao, P.-H. Lin, J.-H. Huang, and J.-D. Huang, Mater. Chem. Phys. (2016). https://doi.org/10.1016/j.matchemphys.2016.06.023

    Article  Google Scholar 

  28. Y. Feutelais, M. Majid, B. Legendre, and S.G. Fries, J. Phase Equilib. (1996). https://doi.org/10.1007/BF02648368

    Article  Google Scholar 

  29. G. Ghosh, H.L. Lukas, and L. Delaey, Calphad (1988). https://doi.org/10.1016/0364-5916(88)90010-7

    Article  Google Scholar 

  30. Y. Liu, D. Liang, and L. Zhang, J. Electron. Mater. (2010). https://doi.org/10.1007/s11664-009-0985-y

    Article  Google Scholar 

  31. S.-W. Chen, and C.-N. Chiu, Scr. Mater. (2007). https://doi.org/10.1016/j.scriptamat.2006.09.018

    Article  Google Scholar 

  32. A.I. Baranov, A.A. Isaeva, L. Kloo, V.A. Kulbachinskii, R.A. Lunin, V.N. Nikiforov, and B.A. Popovkin, J. Solid State Chem. (2004). https://doi.org/10.1016/j.jssc.2004.05.061

    Article  Google Scholar 

  33. International Centre for Diffraction Data Powder Diffraction FileTM: SnSe (PDF# 48-1224).

  34. E. Røst, and E. Vestersjø, Acta Chem. Scand. (1968). https://doi.org/10.3891/acta.chem.scand.22-2118

    Article  Google Scholar 

  35. A.L.N. Stevels, and F. Jellinek, Monatsh. Chem. (1971). https://doi.org/10.1007/BF00905641

    Article  Google Scholar 

  36. I. Jandal, F. Boero, H. Ipser, and K.W. Richer, Intermetallics (2014). https://doi.org/10.1016/j.intermet.2013.11.018

    Article  Google Scholar 

  37. International Centre for Diffraction Data Powder Diffraction FileTM: SnTe (PDF# 46-1210).

Download references

Acknowledgments

The authors acknowledge the financial support of Ministry of Science and Technology, Taiwan (MOST-107-2923-E-007 -005 -MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musa, A.F., Chen, Sw. Interfacial Reactions in Ni/Se-Sn, Ni/Se-Te, Ni/Sn-Te and Ni/Se-Sn-Te Couples. Journal of Elec Materi 50, 4346–4357 (2021). https://doi.org/10.1007/s11664-021-08843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08843-6

Keywords

Navigation