Log in

Effect of Different Soldering Temperatures on the Solder Joints of Flip-Chip LED Chips

  • TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper investigates the effect of different soldering temperatures on the performance of the flip-chip light-emitting diode (FC-LED) filament during direct soldering. The changes in the intermetallic compound (IMC) interface, push–pull force and chip fracture surface of the chip solder joints under direct soldering temperatures of 220°C, 260°C, and 320°C for the flip-chip LED filament were explored by scanning electron microscopy (SEM). Thereby, the optimal soldering temperature of direct joining in actual production is compared. The results show that when the soldering temperature is 260°C, Cu on the substrate begins to diffuse into the solder and react with the solder in the lower layer. The Sn content is relatively uniform, and the average push–pull force of the chip increases. The fracture occurs from inside the solder. With a soldering temperature of 260°C, it is observed that the interface shear stress of the flip-chip LED chip is the largest, and the mechanical stress and residual stress are the lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  2. K.S. Kim, S.H. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).

    Article  CAS  Google Scholar 

  3. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  CAS  Google Scholar 

  4. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1994).

    Article  CAS  Google Scholar 

  5. M.G. Cho, S.K. Kang, and S.H.M. Lee, J. Electron. Mater. 36, 1501 (2007).

    Article  CAS  Google Scholar 

  6. S.L. Allen, M.R. Notis, R.R. Chromik, R.P. Vinci, D.J. Lewis, and R. Schaefer, J. Mater. Res. 19, 1425 (2004).

    Article  CAS  Google Scholar 

  7. V.A. Handara, I. Radchenko, S.K. Tippabhotla, K.R. Narayanan, G. Illya, M. Kunz, N. Tamura, and A.S. Budiman, Sol Energy Mater. Solid C 162, 30 (2017).

    Article  CAS  Google Scholar 

  8. T. Tian, R. Morusupalli, H. Shin, H.Y. Son, K.Y. Byun, Y.C. Joo, R. Caramto, L. Smith, Y.L. Shen, and M. Kunz, Proc. Eng. 139, 101 (2016).

    Article  CAS  Google Scholar 

  9. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, and M. Kunz, Microelectron. Reliab. 52, 530 (2012).

    Article  CAS  Google Scholar 

  10. S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Proc. Eng. 139, 123 (2016).

    Article  CAS  Google Scholar 

  11. I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 45, 6222 (2016).

    Article  CAS  Google Scholar 

  12. I. Radchenko, H.P. Anwarali, S.K. Tippabhotla, and A.S. Budiman, Acta Mater. 156, 125 (2018).

    Article  CAS  Google Scholar 

  13. H.P.A. Ali, I. Radchenko, N. Li, and A. Budiman, J. Mater. Res. 34, 1564 (2019).

    Article  Google Scholar 

  14. Giro and A. Violeta, Comprehens. Anal Chem. 75, 153 (2017).

    Article  Google Scholar 

  15. H. Fallahi, M.S. Nurulakmal, A.F. Arezodar, and J. Abdullah, Mater Eng. 553, 22 (2012).

    Article  CAS  Google Scholar 

  16. L. Yang, J. Ge, Y. Zhang, J. Dai, and Y. **g, J Mater Sci. Mater. El. 26, 613 (2015).

    Article  Google Scholar 

  17. R.M. Shalaby, Cryst. Res. Technol. 45, 427 (2010).

    Article  CAS  Google Scholar 

  18. M. Yunus, K. Srihari, J.M. Pitarresi, and A. Primavera, Microelectron. Reliab. 43, 2077 (2003).

    Article  Google Scholar 

  19. K. Weinberg, T. Bohme, and W.H. Müller, Comput. Mater. 45, 827 (2009).

    Article  CAS  Google Scholar 

  20. D. Kim, J.H. Chang, J. Park, and J. Pak, J Mater Sci. Mater. El. 22, 703 (2011).

    Article  CAS  Google Scholar 

  21. C. Ming, C. Lung, and K. Lin, J. Electron. Mater. 32, 1426 (2003).

    Article  Google Scholar 

  22. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, and R. Sidhu, Eng. Fract. Mech. 131, 9 (2014).

    Article  Google Scholar 

  23. M. Du, Q. Guo, Z. Ouyang, K. Wei, and W.G. Hurley, Case Stud. Therm. Eng. 14, 100492 (2019).

    Article  Google Scholar 

  24. I.E. Anderson and J.L. Harringa, J. Electron. Mater. 33, 1485 (2004).

    Article  CAS  Google Scholar 

  25. I.E. Anderson, B.A. Cook, J. Harringa, and R.L. Terpstra, J. Electron. Mater. 31, 1166 (2002).

    Article  CAS  Google Scholar 

  26. T. An and F. Qin, J Electron Packaging. 138, 1224 (2016).

    Article  Google Scholar 

  27. X. **, H. Li, F. Wallin, A. Avelin, X. Yang, and Z. Yu, Energy Proc. 54, 2907 (2019).

    Google Scholar 

  28. S.W.M. Ridhuan, S.Kumar Tippabhotla, A.A.O. Tay, and A.S. Budiman, Adv. Eng. Mater. 10, 1002 (2019).

    Google Scholar 

  29. Z. Guo, X. Wang, Y. Liu, Y. Liu, and F. Li, J. Constr. Steel Res. 172, 106174 (2020).

    Article  Google Scholar 

  30. Y. Lei, C. **ao, X. Wang, J. Yue, and Q. Zhu, Fusion Eng. Des. 95, 27 (2015).

    Article  CAS  Google Scholar 

  31. P. Peasura and B. Poopat, Adv. Mater. Res. 214, 108 (2011).

    Article  CAS  Google Scholar 

  32. G. Park, S. Uhm, and C. Lee, Mater. Sci. Eng. A 788, 139477 (2020).

    Article  CAS  Google Scholar 

  33. J.M. Song, H.Y. Chuang, and Z.M. Wu, J. Electron. Mater. 36, 1516 (2007).

    Article  CAS  Google Scholar 

  34. Y. Kariya, T. Hosoi, S. Terashima, and T.M. Otsuka, J. Electron. Mater. 33, 321 (2004).

    Article  CAS  Google Scholar 

  35. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, and S. Mucklejohn, J. Mater. Eng. Perform. 21, 629 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuefeng Li or Yang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Guan, C., Li, Y. et al. Effect of Different Soldering Temperatures on the Solder Joints of Flip-Chip LED Chips. J. Electron. Mater. 50, 796–807 (2021). https://doi.org/10.1007/s11664-020-08517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08517-9

Keywords

Navigation