Log in

Influencing Factors of Fatigue Life of Nano-Silver Paste in Chip Interconnection

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The finite element software ANSYS was used to simulate the solder joints in the flip chip, and the stress and strain distribution results of the solder joints are displayed. During the simulation process, the final results of the simulation were not the same when the solder joints of different sizes were used. The simulation results under thermal cycling load show that the area where the maximum stress and strain occur is mostly distributed in the contact area between the solder joint and the copper pillar and at the solder joint. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. From the comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of the solder joint. We found that when the diameter of the solder joint is constant, the increase in the height of the weld point will increase its thermal fatigue life; when the height of the weld point is constant, the increase in the diameter of the weld point increases its thermal fatigue life. The effect of height is greater than the effect of diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yu, L.L. Li, and Y.J. Zhang, Scr. Mater. 66, 931 (2012).

    Article  CAS  Google Scholar 

  2. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).

    Article  CAS  Google Scholar 

  3. M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, and T. Komatsu, Appl. Phys. A 93, 467 (2008).

    Article  CAS  Google Scholar 

  4. H.A.S. Shin, B.J. Kim, J.H. Kim, S.H. Huang, A.S. Budiman, H.Y. Son, K.Y. Byun, N. Tamura, M. Kunz, D.I. Kim, and Y.C. Joo, J. Electron. Mater. 41, 712 (2012).

    Article  CAS  Google Scholar 

  5. I. Radchenko, H.P. Anwarali, S.K. Tippabhotla, and A.S. Budiman, Acta Mater. 156, 125 (2018).

    Article  CAS  Google Scholar 

  6. S.K. Tippabhotla, I. Radchenko, W.J.R. Song, G. Illya, V. Handara, M. Kunz, N. Tamura, A.A.O. Tay, and A.S. Budiman, Prog. Photovolt. 25, 791 (2017).

    Article  CAS  Google Scholar 

  7. S.B. Brown, K.H. Kim, and L. Anand, Int. J. Plast 5, 95 (1989).

    Article  Google Scholar 

  8. V.A. Handara, I. Radchenko, S.K. Tippabhotla, K.R. Narayanan, G. Illya, M. Kunz, N. Tamura, and A.S. Budiman, Sol. Energy Mater. Sol. Cells 162, 30 (2017).

    Article  CAS  Google Scholar 

  9. A.S. Budiman, H.A.S. Shin, B.J. Kim, S.H. Huang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byum, N. Tamura, M. Kunz, and Y.C. Joo, Microelectron. Rel. 52, 530 (2012).

    Article  CAS  Google Scholar 

  10. D.J. Yu, X. Chen, G. Chen, G.Q. Lu, and Z.Q. Wang, Mater. Des. 30, 4574 (2009).

    Article  CAS  Google Scholar 

  11. A. Lis, S. Kicin, F. Brem, and C. Leinenbach, J. Electron. Mater. 46, 729 (2017).

    Article  CAS  Google Scholar 

  12. T.Y. Pan, IEEE Trans. Components Hybrids Manuf. Technol. 14, 824 (1991).

    Article  Google Scholar 

  13. H.P.A. Ali, I. Radchenko, N. Li, and A. Budiman, J. Mater. Res. 34, 1564 (2019).

    Article  Google Scholar 

  14. C.L. Wu, R. Huang, and K.M. Liechti, IEEE Trans. Device Mater. Rel. 17, 355 (2017).

    Article  CAS  Google Scholar 

  15. D. Kong, L. Zhang, and F. Yang, Trans. China Weld. Inst. 38, 17 (2017).

    Google Scholar 

  16. Z. Huang, P. Kumar, I. Dutta, J.H.L. Pang, and R. Sidhu, Eng. Frac. Mech. 131, 9 (2014).

    Article  Google Scholar 

  17. I. Radchenko, S.K. Tippabhotla, N. Tamura, and A.S. Budiman, J. Electron. Mater. 45, 6222 (2016).

    Article  CAS  Google Scholar 

  18. J. Tracy, N. Bosco, F. Novoa, and R. Dauskardt, Prog. Photovolt. 25, 87 (2017).

    Article  CAS  Google Scholar 

  19. G.P. Zhang, F. Liang, X.M. Luo, and X.F. Zhu, J. Mater. Res. 34, 1479 (2019).

    Article  CAS  Google Scholar 

  20. B. Fu, Harbin Institute of Technology (2006) http://doi.org/10.7666/d.D276962.

  21. Y.P. Wang and X. Zhou, China Integr. Circuit 117, 42 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H. Influencing Factors of Fatigue Life of Nano-Silver Paste in Chip Interconnection. J. Electron. Mater. 50, 224–232 (2021). https://doi.org/10.1007/s11664-020-08501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08501-3

Keywords

Navigation