Log in

InGaSb Defect Filter Layer to Improve Performance of GaSb Solar Cells Grown on GaAs Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The reduction of the threading dislocation density in metamorphic GaSb grown on GaAs substrates through the use of InGaSb defect filter layers has been investigated. More specifically, we study the effects of strain and thickness on the ability of a InGaSb defect filter layer to reduce threading dislocations in GaSb solar cells grown on GaAs substrates. The strain between the GaSb metamorphic layer on GaAs substrate (99.5% relaxed) and the InGaSb defect filter layer is varied by changing the indium composition in the InGaSb layer. It is demonstrated that an InGaSb defect filter layer with 0.6% strain is more effective for blocking threading dislocations compared with higher-strain layers, resulting in improved short-circuit current (Jsc) and open-circuit voltage (Voc) for the metamorphic GaSb solar cell. The optimization of the defect filter layer involves varying the thickness of the layer to achieve the lowest possible threading dislocation density. This also takes into account the critical thickness of the InGaSb layer on GaSb to avoid generation of threading dislocations from the InGaSb layer itself. It is shown that adding an In0.11Ga0.89Sb defect filter layer with thickness of 250 nm and 0.6% strain beneath a GaSb solar cell grown on a GaAs substrate improves Voc from 0.1 V to 0.16 V and Jsc from 19.7 mA/cm2 to 24.7 mA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (2006)

  2. M.A. Green, Prog. Photovolt. Res. Appl. 25, 333 (2017).

    Article  Google Scholar 

  3. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 26, 427 (2018).

    Article  Google Scholar 

  4. P.T. Chiu, D.C. Law, R.L. Woo, S.B. Singer, D. Bhusari, W.D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R.R. King, and N.H. Karam, in 2014 IEEE 40th Photovoltaic Specialists Conference PVSC 2014 (2014), pp. 11–13

  5. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  Google Scholar 

  6. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T.N.D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A.W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, Prog. Photovolt. Res. Appl. 22, 277 (2014).

    Article  CAS  Google Scholar 

  7. F. Dimroth, T.N.D. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fus-Kailuweit, A.W. Bett, R. Krause, C. Drazek, E. Guiot, J. Wasselin, A. Tauzin, and T. Signamarcheix, IEEE J. Photovolt. 6, 343 (2016).

    Article  Google Scholar 

  8. T. Takamoto, M. Kaneiwa, M. Imaizumi, and M. Yamaguchi, Prog. Photovolt. Res. Appl. 13, 495 (2005).

    Article  CAS  Google Scholar 

  9. K.A. Bertness, S.R. Kurtz, D.J. Friedman, A.E. Kibbler, C. Kramer, and J.M. Olson, Appl. Phys. Lett. 65, 989 (1994).

    Article  CAS  Google Scholar 

  10. D.J. Friedman, Curr. Opin. Solid State Mater. Sci. 14, 131 (2010).

    Article  CAS  Google Scholar 

  11. G. Balakrishnan, S. Huang, T.J. Rotter, A. Stintz, L.R. Dawson, K.J. Malloy, H. Xu, and D.L. Huffaker, Appl. Phys. Lett. 84, 2058 (2004).

    Article  CAS  Google Scholar 

  12. G. Balakrishnan, S. Huang, L.R. Dawson, and D.L. Huffaker, J. Vac. Sci. Technol. B 22, 1529 (2004).

    Article  CAS  Google Scholar 

  13. J.F. Geisz, S.R. Kurtz, M.W. Wanlass, J.S. Ward, A. Duda, D.J. Friedman, J.M. Olson, W.E. McMahon, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, and K.M. Jones, in Conference Record IEEE Photovoltaic Specialists Conference (2008)

  14. E.J. Renteria, A. Mansoori, S.J. Addamane, D.M. Shima, C.P. Hains, and G. Balakrishnan, in Conference Record IEEE Photovoltaic Specialists Conference (2016), pp. 2310–2312

  15. G.T. Nelson, B.-C. Juang, M.A. Slocum, Z.S. Bittner, R.B. Laghumavarapu, D.L. Huffaker, and S.M. Hubbard, Appl. Phys. Lett. 111, 231104 (2017).

    Article  Google Scholar 

  16. E. Vadiee, E. Renteria, C. Zhang, J.J. Williams, A. Mansoori, S. Addamane, G. Balakrishnan, and C.B. Honsberg, IEEE J. Photovolt. 7, 1795 (2017).

    Article  Google Scholar 

  17. T.A. Nilsen, M. Breivik, G. Myrvågnes, B.-O. Fimland, and J. Vac, Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 28, 37 (2010).

    Google Scholar 

  18. A. Mansoori, S.J. Addamane, E.J. Renteria, D.M. Shima, M. Behzadirad, E. Vadiee, C. Honsberg, and G. Balakrishnan, Sol. Energy Mater. Sol. Cells 185, 21 (2018).

    Article  CAS  Google Scholar 

  19. A. Mansoori, S.J. Addamane, E.J. Renteria, D.M. Shima, V.S. Mangu, E. Vadiee, C. Honsberg, and G. Balakrishnan, in 2018 IEEE 7th World Conference Photovoltaics Energy Conversion, WCPEC 2018 - A Jt. Conference 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC (2018), pp. 917–920

  20. J.W. Matthews, A.E. Blakeslee, and S. Mader, Thin Solid Films 33, 253 (1976).

    Article  CAS  Google Scholar 

  21. J.S. Whelan, T. George, E.R. Weber, S. Nozaki, A.T. Wu, and M. Umeno, J. Appl. Phys. 68, 5115 (1990).

    Article  CAS  Google Scholar 

  22. J. Yang, P. Bhattacharya, and Z. Mi, IEEE Trans. Electron Devices 54, 2849 (2007).

    Article  CAS  Google Scholar 

  23. W. Qian, M. Skowronski, and R. Kaspi, J. Electrochem. Soc. 144, 1430 (1997).

    Article  CAS  Google Scholar 

  24. R. Hao, S. Deng, L. Shen, P. Yang, J. Tu, H. Liao, Y. Xu, and Z. Niu, Thin Solid Films 519, 228 (2010).

    Article  CAS  Google Scholar 

  25. Y. Wang, P. Ruterana, L. Desplanque, S. El Kazzi, and X. Wallart, J. Appl. Phys. 109, 023509 (2011).

    Article  Google Scholar 

  26. H.S. Kim, Y.K. Noh, M.D. Kim, Y.J. Kwon, J.E. Oh, Y.H. Kim, J.Y. Lee, S.G. Kim, and K.S. Chung, J. Cryst. Growth 301–302, 230 (2007).

    Article  Google Scholar 

  27. O. Dier, C. Reindl, A. Bachmann, C. Lauer, T. Lim, K. Kashani-Shirazi, and M.C. Amann, Semicond. Sci. Technol. 23, 025018 (2008).

    Article  Google Scholar 

  28. A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, and F. Genty, Semicond. Sci. Technol. 22, 1140 (2007).

    Article  CAS  Google Scholar 

  29. G.P. Donati, R. Kaspi, and K.J. Malloy, J. Appl. Phys. 93, 1083 (2003).

    Article  CAS  Google Scholar 

  30. B. Bennett, R. Magno, J. Boos, W. Kruppa, and M. Ancona, Solid State Electron. 49, 1875 (2005).

    Article  CAS  Google Scholar 

  31. R. People and J.C. Bean, Appl. Phys. Lett. 47, 322 (1985).

    Article  CAS  Google Scholar 

  32. J.E. Ayers, J. Cryst. Growth 135, 71 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mansoori.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoori, A., Addamane, S.J., Renteria, E.J. et al. InGaSb Defect Filter Layer to Improve Performance of GaSb Solar Cells Grown on GaAs Substrates. J. Electron. Mater. 49, 7153–7158 (2020). https://doi.org/10.1007/s11664-020-08490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08490-3

Keywords

Navigation