Log in

Sn Doped FeNbSb Half-Heusler Compounds for Tuning Thermoelectric Performance

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

p-Type FeNbSb-based half-Heusler compounds exhibit promising thermoelectric (TE) performance under high temperatures. Herein, the optimal sintering temperature and pressure of these compounds were determined. Sintering temperature can affect relative density, and consequently, improve TE performance. In addition, a series of Sn-doped FeNbSb compounds was prepared in accordance with the optimal sintering temperature and pressure. Results showed that Sn optimized the power factor and reduced lattice thermal conductivity by enhancing point defect phonon scattering. A high ZT of 0.66 was attained at 923 K for FeNbSb0.84Sn0.16. The findings of this study lay the foundation for reducing the thermal conductivity of FeNbSb-based compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Ioffe, L.S. Stil'Bans, E.K. Iordanishvili, T.S. Stavitskaya, A. Gelbtuch, and G. Vineyard, Phys. Today 12, 42 (1959)

    Article  Google Scholar 

  2. H. **e, H. Wang, Y. Pei, C. Fu, X. Liu, G.J. Snyder, X. Zhao, and T. Zhu, Adv. Funct. Mater. 23, 5123 (2013)

    Article  CAS  Google Scholar 

  3. T. Fang, X. Li, C. Hu, C. Hu, Q. Zhang, J. Yang, W. Zhang, X. Zhao, and D.J. Singh, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900677

    Article  Google Scholar 

  4. T. Zhu, C. Fu, H. **e, Y. Liu, and X. Zhao, Adv. Energy Mater. 5, 1500588 (2015)

    Article  Google Scholar 

  5. J. Shen, Z. Wang, J. Chu, S. Bai, X. Zhao, L. Chen, and T. Zhu, ACS Appl. Mater. Interfaces 11, 14182 (2019)

    Article  CAS  Google Scholar 

  6. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012)

    Article  CAS  Google Scholar 

  7. Y. Pei, G. Tan, D. Feng, L. Zheng, Q. Tan, X. **e, S. Gong, Y. Chen, J.-F. Li, J. He, M.G. Kanatzidis, and L.D. Zhao, Adv. Energy Mater. 7, 1601450 (2017)

    Article  Google Scholar 

  8. J. Shuai, X.J. Tan, Q. Guo, J.T. Xu, A. Gellé, R. Gautier, J.-F. Halet, F. Failamani, J. Jiang, and T. Mori, Mater. Today Phys. 9, 100094 (2019)

    Article  Google Scholar 

  9. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011)

    Article  CAS  Google Scholar 

  10. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012)

    Article  CAS  Google Scholar 

  11. R. He, D. Kraemer, J. Mao, L. Zeng, Q. Jie, Y. Lan, C. Li, J. Shuai, H.S. Kim, Y. Liu, D. Broido, C.-W. Chu, G. Chen, and Z. Ren, Proc. Natl. Acad. Sci. USA 113, 13576 (2016)

    Article  CAS  Google Scholar 

  12. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012)

    Article  CAS  Google Scholar 

  13. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008)

    Article  CAS  Google Scholar 

  14. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, H.S. Weon, S.L. **ang, H.L. Young, G.J. Snyder, and W.K. Sung, Science 348, 109 (2015)

    Article  CAS  Google Scholar 

  15. Z. Bua, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, and Y. Pei, Mater. Today Phys. (2019). https://doi.org/10.1016/j.mtphys.2019.100096

    Article  Google Scholar 

  16. S. Roychowdhury, R.K. Biswas, M. Dutta, S.K. Pati, and K. Biswas, ACS Energy Lett. 4, 1658 (2019)

    Article  CAS  Google Scholar 

  17. S. Li, J. Yang, J. **n, Q. Jiang, Z. Zhou, H. Hu, B. Sun, A. Basit, and X. Li, ACS Appl. Energy Mater. 2, 1997 (2019)

    Article  CAS  Google Scholar 

  18. Y. **ao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S.J. Pennycook, L. Huang, J. He, and L.D. Zhao, J. Am. Chem. Soc. 139, 18732 (2017)

    Article  CAS  Google Scholar 

  19. C. Fu, T. Zhu, Y. Pei, H. **e, H. Wang, G.J. Snyder, Y. Liu, and X. Zhao, Adv. Energy Mater. 4, 1400600 (2014)

    Article  Google Scholar 

  20. S.R. Culp, S.J. Poon, N. Hickman, T.M. Tritt, and J. Blumm, Appl. Phys. Lett. 88, 042106 (2006)

    Article  Google Scholar 

  21. D.P. Young, P. Khalifah, R.J. Cava, and A.P. Ramirez, J. Appl. Phys. 87, 317 (2000)

    Article  CAS  Google Scholar 

  22. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He, Acta Mater. 57, 2757 (2009)

    Article  CAS  Google Scholar 

  23. M. Schwall, and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013)

    Article  CAS  Google Scholar 

  24. S.R. Culp, J.W. Simonson, S.J. Poon, V. Ponnambalam, J. Edwards, and T.M. Tritt, Appl. Phys. Lett. 93, 022105 (2008)

    Article  Google Scholar 

  25. P. Qiu, X. Huang, X.Z. Chen, and L. Chen, J. Appl. Phys. 106, 103703 (2009)

    Article  Google Scholar 

  26. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2011)

    Article  CAS  Google Scholar 

  27. C. Fu, T. Zhu, Y. Liu, H. **e, and X. Zhao, Energy Environ. Sci. 8, 216 (2015)

    Article  CAS  Google Scholar 

  28. C. Fu, H. Wu, Y. Liu, J. He, X. Zhao, and T. Zhu, Adv. Sci. 3, 1600035 (2016)

    Article  Google Scholar 

  29. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144 (2015)

    Article  Google Scholar 

  30. T. Fang, S. Zheng, T. Zhou, L. Yan, and P. Zhang, Phys. Chem. Chem. Phys. 19, 4411 (2017)

    Article  CAS  Google Scholar 

  31. T. Fang, S. Zheng, H. Chen, H. Cheng, L. Wang, and P. Zhang, RSC Adv. 6, 10507 (2016)

    Article  CAS  Google Scholar 

  32. T. Fang, S. Zheng, T. Zhou, H. Chen, and P. Zhang, J. Electron. Mater. 46, 3030 (2016)

    Article  Google Scholar 

  33. C. Fu, Y. Liu, X. Zhao, and T. Zhu, Adv. Electron. Mater. 2, 1600394 (2016)

    Article  Google Scholar 

  34. G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, B. Kozinsky, and Z. Ren, Energy Environ. Sci. 7, 4070 (2014)

    Article  CAS  Google Scholar 

  35. A.F. May, E.S. Toberer, A. Saramat, and G.J. Snyder, Phys. Rev. B 80, 125205 (2009)

    Article  Google Scholar 

  36. B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, and S. Alvarez, Dalton Trans. 21, 2832 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (No. 51871240) and the National Postdoctoral Program for Innovative Talents (No. BX201700132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqi Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Zheng, S., Cui, W. et al. Sn Doped FeNbSb Half-Heusler Compounds for Tuning Thermoelectric Performance. J. Electron. Mater. 49, 2862–2871 (2020). https://doi.org/10.1007/s11664-019-07919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07919-8

Keywords

Navigation