Log in

Synthesis and Influence Factors Study of 4A Molecular Sieve via Halloysite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A 4A Zeolite molecular sieve was successfully synthesized with a facile hydrothermal method. We used Yunnan soft kaolin as raw material, purified Halloysite and synthesized a 4A Zeolite molecular sieve directly. On this basis, we studied the effect of alkali concentration, solid–liquid ratio, aging temperature and crystallization temperature on the calcium ion exchange performance of 4A Zeolites. The results showed that the calcium ion exchange rate of 4A molecular sieve could reach 326 mg CaCO3/g when it was synthesized in a condition of 2 mol/L of molecular alkali, 60°C aging temperature and 90°C crystallization temperature. The x-ray diffraction results indicated that the molecular sieve prepared under optimum conditions was of good crystallinity. The field emission scanning electron microscopy results showed that the morphologies of synthesized samples prepared under optimum conditions was a cube structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Niu, Y.H. Qiang, C.Y. Wang, X. Li, Y.H. Zhou, X.Y. Shang, and Q.C. Zhuang, Acta Mineral. Sin. 34, 13 (2014).

    CAS  Google Scholar 

  2. X.F. Li, J.F. Guan, F.F. Chen, F. Zhang, and K. Yin, Acta Mineral. Sin. 36, 138 (2016).

    Google Scholar 

  3. D. Novembre, B.D. Sabatino, and D. Gimeno, Clays Clay Miner. 53, 28 (2005).

    Article  CAS  Google Scholar 

  4. B. Zsirka, E. Horvath, P. Szabo, T. Juzsakova, R.K. Szilagyi, D. Fertig, E. Mako, T. Varga, Z. Konya, and A. Kukovecz, J. Kristof. Appl. Surf. Sci. 399, 245 (2017).

    Article  CAS  Google Scholar 

  5. H. Yan, P. Zhang, J. Li, X.L. Zhao, K. Zhang, and B. Zhang, Sci. Rep. 5, 18641 (2015).

    Article  Google Scholar 

  6. Y. Lvov, W.C. Wang, L.Q. Zhang, and R. Fakhrullin, Adv. Mater. 28, 1227 (2016).

    Article  CAS  Google Scholar 

  7. T. Tsoufis, F. Katsaros, B.J. Kooi, E. Bletsa, S. Papageorgiou, Y. Deligiannakis, and I. Panagiotopoulos, Chem. Eng. J. 313, 466 (2017).

    Article  CAS  Google Scholar 

  8. F. Ferrante, N. Armata, G. Cavallaro, and G. Lazzara, J. Phys. Chem. C. 121, 2951 (2017).

    Article  CAS  Google Scholar 

  9. T.S. Gaaz, A.B. Sulong, M.N. Akhtar, A.A. Kadhum, A.B. Mohamad, and A.A. Al-Amiery, Molecules 20, 22833 (2015).

    Article  CAS  Google Scholar 

  10. Y.B. Fu and L.D. Zhang, J. Solid State Chem. 178, 3595 (2005).

    Article  CAS  Google Scholar 

  11. J.A. Weisman, U. Jammalamadaka, K. Tappa, and D.K. Mills, Bioengineering 4, 1 (2017).

    Article  Google Scholar 

  12. F. **a, Y. Cheng, J. Dai, C.L. Sun, R. Liu, and X.D. Lou, Angew Chem. Int. Ed. 57, 3123 (2018).

    Article  Google Scholar 

  13. S.K. Konnova, Y.M. Lvov, and R.F. Fakhrullin, Clay Miner. 51, 429 (2016).

    Article  CAS  Google Scholar 

  14. D.H. Zhang, W.J. Huo, J. Wang, T.C. Li, X.J. Cheng, J.L. Li, and A.Q. Zhang, J. Appl. Poym. Sci. 126, 1580 (2012).

    Article  CAS  Google Scholar 

  15. D.C. Hu, B.C. Zhong, Z.X. Jia, J. Lin, M.L. Liu, Y.F. Luo, and D.M. Jia, Mater. Lett. 188, 327 (2017).

    Article  CAS  Google Scholar 

  16. X.C. Li, T.Y. Zhai, P.C. Gao, H.L. Cheng, R.Z. Hou, X.D. Lou, and F. **a, Nat. Commun. 9, 40 (2018).

    Article  Google Scholar 

  17. S. Sadjadi and M. Atai, t. Appl. Clay Sci. 153, 78 (2017).

    Article  Google Scholar 

  18. Y. Li, J.J. Huang, and Z.C. Liang, Bull. Chin. Ceram. Soc. 35, 3426 (2016).

    Google Scholar 

  19. X.D. Lou, Y. Zhuang, X.L. Zuo, Y.M. Jia, Y.N. Hong, X.H. Min, Z.Y. Zhang, X.M. Xu, and F. **a, Real time C 87, 6822 (2015).

    CAS  Google Scholar 

  20. Z.H. Zhou, G. **, H. Liu, J.X. Wu, and J.F. Mei, Appl. Clay Sci. 97, 110 (2014).

    Article  Google Scholar 

  21. N. Rai and A. Sharma, Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 57, 340 (2018).

    Google Scholar 

  22. Z. Tauanov, D. Shah, V. Inglezakis, and P.K. Jamwal, J. Clean. Prod. 182, 616 (2018).

    Article  CAS  Google Scholar 

  23. J.L. Chen and X.W. Lu, J. Water Reuse Desalin. 8, 94 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqian Wang or Qimeng Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Y., Lu, G., Wang, Y. et al. Synthesis and Influence Factors Study of 4A Molecular Sieve via Halloysite. J. Electron. Mater. 48, 7756–7761 (2019). https://doi.org/10.1007/s11664-019-07564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07564-1

Keywords

Navigation