Log in

Influence of Structural Parameters on the Behavior of an Asymmetric Linearly Graded Workfunction Trapezoidal Gate SOI MOSFET

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a dual metal trapezoidal recessed channel metal oxide semiconductor field effect transistor (MOSFET) embedded with asymmetric stack gate with linearly graded metal work-function technique to improve the carrier transport efficiency and device switching performance. The analytical model for the proposed asymmetric-linearly graded trapezoidal gate (ASY–LGTG) silicon on insulator (SOI) MOSFET has been developed considering parabolic approximation of 2-D Poisson’s equation. The threshold voltage of the device is extracted using minimum surface potential. The simulation work has been carried out using a Silvaco TCAD tool to validate the results of the analytical model. This grooved structure exhibits the corner effect, which plays a dynamic role in the improvement of the device performance. However, the impact of the corner effect can be controlled by the groove corner angle and do** concentration. We have also investigated the impact of different structural parameters such as negative junction depth (NJD), corner angle, substrate do** and stack gate features (upper oxide permittivity and oxide thickness ratio) on the performance of minimum surface potential, sub-threshold slope (SS), drain induced barrier lowering (DIBL), threshold voltage and device switching characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semiconductor Industry Association, International Technology Roadmap for Semiconductors (San Jose: SIA, 2011).

    Google Scholar 

  2. K. Suzuki and S. Pidin, IEEE Trans. Electron Devices 50, 1297 (2003).

    Article  Google Scholar 

  3. D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.P. Wong, IEEE Conference Proceedings (2001), pp. 259–288.

  4. G.P. Katti, N. Das Gupta, and A. Das Gupta, IEEE Trans. Electron Devices 51, 1169 (2004).

    Article  Google Scholar 

  5. A. Chaudhry and M.J. Kumar, IEEE Trans. Device Mater. Reliab 4, 99 (2004).

    Article  Google Scholar 

  6. S. Kimura, J. Tanaka, H. Noda, T. Toyabe, and S. Ihara, IEEE Trans. Electron Devices 42, 94 (1995).

    Article  Google Scholar 

  7. S. Sreelal, C.K. Lau, and G.S. Samudra, Semicond. Sci. Technol. 17, 179 (2002).

    Article  Google Scholar 

  8. J.Y. Seo, K.J. Lee, Y.S. Kim, S.Y. Lee, S.J. Hwang, and C.K. Yoon, Microelectron. Reliab. 45, 1317 (2005).

    Article  Google Scholar 

  9. S. Mishra, A.S. Lenka, S.S. Mohanty, U. Bhanja, and G.P. Mishra, IEEE Conference Proceedings (2017), pp. 536.

  10. M.J. Kumar and A. Chaudhry, IEEE Trans. Electron Devices 51, 569 (2004).

    Article  Google Scholar 

  11. Y.T. Hou, M.F. Li, T. Low, and D.L. Kwong, IEEE Trans. Electron Devices 51, 1783 (2004).

    Article  Google Scholar 

  12. T.K. Chiang, Microelectron. Reliab. 49, 113 (2009).

    Article  Google Scholar 

  13. R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R.S. Gupta, IEEE Trans. Electron Devices 55, 2602 (2008).

    Article  Google Scholar 

  14. R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R.S. Gupta, Semicond. Sci. Technol. 24, 065005 (2009).

    Article  Google Scholar 

  15. P. Malik, R.S. Gupta, R. Chaujar, and M. Gupta, Microelectron. Reliab. 52, 151 (2012).

    Article  Google Scholar 

  16. M. Singh, S. Mishra, S.S. Mohanty, and G.P. Mishra, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 015010 (2016).

    Article  Google Scholar 

  17. B.Y. Tsui and C.F. Huang, IEEE Electron Device Lett. 24, 153 (2003).

    Article  Google Scholar 

  18. T.L. Li, C.H. Hu, W.L. Ho, H.C.H. Wang, and C.Y. Chang, IEEE Trans. Electron Devices 52, 1172 (2005).

    Article  Google Scholar 

  19. T. Nabatame, Y. Nunoshige, M. Kadoshima, H. Takaba, K. Segawa, S. Kimura, H. Satake, H. Ota, T. Ohishi, and A. Toriumi, Microelectron. Eng. 85, 1524 (2008).

    Article  Google Scholar 

  20. S. Deb, N.B. Singh, N. Islam, and S.K. Sarkar, IEEE Trans. Nanotechnol. 11, 472 (2012).

    Article  Google Scholar 

  21. A.S. Lenka, S. Mishra, S. Mishra, U. Bhanja, and G.P. Mishra, Superlattices Microstruct. 111, 878 (2017).

    Article  Google Scholar 

  22. S. Mishra, U. Bhanja, and G.P. Mishra, Int. J. Numer. Model. 32, e2487 (2018).

    Article  Google Scholar 

  23. B. Cheng, M. Cao, R. Rao, A. Inani, P.V. Voorde, and W.M. Greene, IEEE Trans. Electron Devices 46, 1537 (1999).

    Article  Google Scholar 

  24. M. Saxena, S. Haldar, M. Gupta, and R.S. Gupta, Solid State Electron. 47, 2131 (2003).

    Article  Google Scholar 

  25. T.K. Chiang, Microelectron. Reliab. 49, 113 (2009).

    Article  Google Scholar 

  26. S. Mishra, U. Bhanja, and G.P. Mishra, Int. J. Nanopart. 11, 140 (2019).

    Article  Google Scholar 

  27. Silvaco International, ATLAS Device Simulation Software (Santa Clara, CA: Silvaco Int, 2014).

    Google Scholar 

  28. E. Takeda, H. Kume, and S. Asai, IEEE Trans. Electron Devices 30, 448 (1983).

    Article  Google Scholar 

  29. S. Kimura, J. Tanaka, H. Noda, T. Toyabe, and S. Ihara, IEEE Trans. Electron Devices 42, 94 (1995).

    Article  Google Scholar 

  30. M. **ao-Hua, H. Yue, S. Bao-Gang, G. Hai-**a, R. Hong-**a, Z. **-Cheng, Z. **-Feng, Z. **ao-Ju, and Z. Wei-Dong, Chin. Phys. Soc. 15, 195 (2006).

    Article  Google Scholar 

  31. I. Polishchuk, P. Ranade, T.J. King, and C. Hu, IEEE Electron Device Lett. 22, 444 (2001).

    Article  Google Scholar 

  32. S. Luan, H.X. Liu, and R.X. Jia, Sci. China Ser. E Technol. Sci. 52, 2400 (2009).

    Article  Google Scholar 

  33. W.P. Bai, S.H. Bae, H.C. Wen, S. Mathew, L.K. Bera, N. Balasubramanium, N. Yamada, M.F. Li, and D.L. Kwong, IEEE Electron Device Lett. 26, 231 (2005).

    Article  Google Scholar 

  34. A. Pan, R. Liu, M. Sun, and C.Z. Ning, ACS Nano 4, 671 (2010).

    Article  Google Scholar 

  35. J. Liu, H.C. Wen, J.P. Lu, and D.L. Kwong, IEEE Electron Device Lett. 26, 228 (2005).

    Article  Google Scholar 

  36. Z. Zhang, S.C. Song, C. Huffman, M.M. Hussain, J. Barnett, N. Moumen, H.N. Alshareef, P. Majhi, J.H. Sim, S.H. Bae, and B.H. Lee, Electrochem. Solid State Lett. 8, 271 (2005).

    Article  Google Scholar 

  37. S.M. Sze and K.K. Ng, Physics of Semiconductor Device, 3rd ed. (New York: Wiley, 2007), pp. 314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Prasad Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Mishra, G.P. Influence of Structural Parameters on the Behavior of an Asymmetric Linearly Graded Workfunction Trapezoidal Gate SOI MOSFET. J. Electron. Mater. 48, 6607–6616 (2019). https://doi.org/10.1007/s11664-019-07465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07465-3

Keywords

Navigation