Log in

The δ-Do**-Dependent Spin Polarization in a Both Magnetically and Electrically Confined Semiconductor Heterostructure

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we theoretically investigate how to control electron-spin polarization by δ-do** in a both magnetically and electrically confined semiconductor heterostructure. It is shown that, due to Zeeman coupling, a considerable spin polarization effect appears in the δ-doped device. It is also shown that both magnitude and sign of spin polarization can be tuned by changing weight or position of the δ-do**. Thus, a δ-do** controllable spin filter can be achieved for spintronics device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. G.A. Prinz, Phys. Today 48, 58 (1995).

    Article  Google Scholar 

  2. G.A. Prinz, Science 282, 1660 (1998).

    Article  Google Scholar 

  3. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).

    Article  Google Scholar 

  4. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  Google Scholar 

  5. G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, and B.J. van Wees, Phys. Rev. B 62, R4790 (2000).

    Article  Google Scholar 

  6. E.I. Rashba, Phys. Rev. B 62, R16267 (2000).

    Article  Google Scholar 

  7. A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001).

    Article  Google Scholar 

  8. F. Zhai and H.Q. Xu, Phys. Rev. Lett. 94, 246601 (2005).

    Article  Google Scholar 

  9. M.J. Gilbert and J.P. Bird, Appl. Phys. Lett. 77, 1050 (2000).

    Article  Google Scholar 

  10. T. Koga, J. Nitta, S. Datta, and H. Takayanagi, Phys. Rev. Lett. 88, 126601 (2002).

    Article  Google Scholar 

  11. I. Žutíc, J. Fabiam, and S. DasSarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  12. A. Matulis, F.M. Peeters, and P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994).

    Article  Google Scholar 

  13. A. Majumdar, Phys. Rev. B 54, 11911 (1996).

    Article  Google Scholar 

  14. G. Papp and F.M. Peeters, Appl. Phys. Lett. 78, 2184 (2001).

    Article  Google Scholar 

  15. H.Z. Xu and Y. Okada, Appl. Phys. Lett. 79, 3119 (2001).

    Article  Google Scholar 

  16. G. Papp and F.M. Peeters, Appl. Phys. Lett. 79, 3198 (2001).

    Article  Google Scholar 

  17. Y. Jiang, M.B.A. Jalil, and T.S. Low, Appl. Phys. Lett. 80, 1673 (2002).

    Article  Google Scholar 

  18. B. Wang, Y. Guo, X.Y. Chen, and B.L. Gu, J. Appl. Phys. 92, 4138 (2002).

    Article  Google Scholar 

  19. Y. Jiang and M.B.A. Jalil, J. Phys.: Condens. Matter 15, L31 (2003).

    Google Scholar 

  20. F. Zhai, H.Q. Xu, and Y. Guo, Phys. Rev. B 70, 085308 (2004).

    Article  Google Scholar 

  21. M.W. Lu, Appl. Surf. Sci. 252, 1747 (2005).

    Article  Google Scholar 

  22. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, and Q.L. Li, Appl. Phys. Lett. 102, 022410 (2013).

    Article  Google Scholar 

  23. M.W. Lu, Z.Y. Wang, Y.L. Liang, Y.B. An, and Q.L. Li, EPL 101, 47001 (2013).

    Article  Google Scholar 

  24. S. Li, M.W. Lu, Y.Q. Jiang, and S.Y. Chen, Phys. Lett. A 378, 3189 (2014).

    Article  Google Scholar 

  25. Y.L. Zhou, M.W. Lu, X.L. Cao, X.H. Huang, M.R. Huang, and D.H. Liang, Appl. Phys. A 124, 705 (2018).

    Article  Google Scholar 

  26. L.H. Shen, W.Y. Ma, G.L. Zhang, and S.P. Yang, Phys. E 71, 39 (2015).

    Article  Google Scholar 

  27. M.W. Lu, S.Y. Chen, X.H. Huang, and G.L. Zhang, IEEE J. Electron. Devices 6, 227 (2018).

    Article  Google Scholar 

  28. G.X. Liu, G.L. Zhang, W.Y. Ma, and L.H. Shen, Solid State Commun. 231, 6 (2016).

    Article  Google Scholar 

  29. M.W. Lu, S.Y. Chen, G.L. Zhang, and X.H. Huang, J. Phys.: Condens. Matter 30, 145302 (2018).

    Google Scholar 

  30. M.W. Lu, S.Y. Chen, and G.L. Zhang, IEEE Trans. Electron. Dev. 64, 1825 (2017).

    Article  Google Scholar 

  31. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  Google Scholar 

  32. Q. Tang, M.W. Lu, X.H. Huang, and Y.L. Zhou, J. Nanoelectron. Optoelectron. 13, 132 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 17C1435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-**-Dependent%20Spin%20Polarization%20in%20a%20Both%20Magnetically%20and%20Electrically%20Confined%20Semiconductor%20Heterostructure&author=Gui-**-Dependent Spin Polarization in a Both Magnetically and Electrically Confined Semiconductor Heterostructure. J. Electron. Mater. 48, 2055–2060 (2019). https://doi.org/10.1007/s11664-019-07023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07023-x

Keywords

Navigation