Log in

Effect of Separate Zinc, Copper and Graphene Oxides Nanofillers on Electrical Properties of PVA Based Composite Strips

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Light weight, flexible and easily processable polymeric nanocomposites possessing either high or low dielectric permittivity is in demand for high density capacitors and in microelectronics, respectively. The present study was designed to investigate the effect of separate zinc oxide (ZnO), copper oxide (CuO), graphene oxide (GO) and reduced graphene oxide (RGO) nanofillers on the electrical properties of poly(vinyl alcohol) (PVA) based composite strips. Herein, a simple solution casting technique has been adopted to fabricate composite strips at different nanofillers loadings. The electrical properties of composite strips were evaluated using a frequency response analyzer. There was observed a rise in dielectric constant (\( \varepsilon^{\prime } \)), dielectric loss (\( \varepsilon^{\prime \prime } \)) and AC conductivity (σac) of separate ZnO and GO nanofillers loaded PVA strips; whereas a decrease in the said parameters was observed on loading with separate CuO and RGO nanofillers in the PVA based composite strips. The frequency response analysis showed a prominent effect of applied frequency and nanofiller contents on the electrical properties of composite strips. There was observed a significant decrease in \( \varepsilon^{\prime } \) and \( \varepsilon^{\prime \prime } \) on just 0.004 wt.% RGO loading in the PVA based composite strips. Such efficient nanocomposites might be suitable for their use in microelectronics and microwave applications at above the 1 MHz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, and H.C. Zur Loye, Materials 2, 1697 (2009).

    Article  Google Scholar 

  2. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, and G.H. Hu, Prog. Mater. Sci. 57, 660 (2012).

    Article  Google Scholar 

  3. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010).

    Article  Google Scholar 

  4. C.W. Nan, Y. Shen, and J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010).

    Article  Google Scholar 

  5. M. Aslam, M.A. Kalyar, and Z.A. Raza, Polym. Eng. Sci. (2018). https://doi.org/10.1002/pen.24855.

    Google Scholar 

  6. M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Mater. Sci.: Mater. Electron. 28, 13401 (2017).

    Google Scholar 

  7. M. Aslam, M.A. Kalyar, and Z.A. Raza, Polym. Bull. (2018). https://doi.org/10.1007/s00289-018-2367-1.

    Google Scholar 

  8. M. Aslam, M.A. Kalyar, and Z.A. Raza, Appl. Phys. A 123, 424 (2017).

    Article  Google Scholar 

  9. M. Aslam, M.A. Kalyar, and Z.A. Raza, J. Electron. Mater. 47, 3912 (2018).

    Article  Google Scholar 

  10. J.K. Rao, A. Raizada, D. Ganguly, M.M. Mankad, S.V. Satayanarayana, and G.M. Madhu, J. Mater. Sci. 50, 7064 (2015).

    Article  Google Scholar 

  11. M. Aslam, M.A. Kalyar, and Z.A. Raza, Mater. Res. Express 3, 105036 (2016).

    Article  Google Scholar 

  12. S.B. Aziz and Z.H. Abidin, Phys. Chem. Mater. 144, 280 (2014).

    Article  Google Scholar 

  13. A.S. Ayesh, Chin. J. Polym. Sci. 28, 537 (2010).

    Article  Google Scholar 

  14. C. Gavade, N.L. Singh, D. Singh, S. Shah, A. Tripathi, and D.K. Avasthi, Integr. Ferroelectr. 117, 76 (2010).

    Article  Google Scholar 

  15. S.H. **e, B.K. Zhu, X.Z. Wei, Z.K. Xu, and Y.Y. Xu, Compos. Part A Appl. Sci. Manuf. 36, 1152 (2005).

    Article  Google Scholar 

  16. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, and G.N. Kumaraswamy, Appl. Phys. A 87, 797 (2007).

    Article  Google Scholar 

  17. G.C. Psarras, E. Manolakaki, and G.M. Tsangaris, Compos. Part A Appl. Sci. Manuf. 34, 1187 (2003).

    Article  Google Scholar 

  18. Y. Cao, P.C. Irwin, and K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797 (2004).

    Article  Google Scholar 

  19. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12, 914 (2005).

    Article  Google Scholar 

  20. N. Ahad, E. Saion, and E. Gharibshahi, J Nanomater. 2012, 94 (2012).

    Article  Google Scholar 

  21. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari, T. Sheela, and J. Naik, in AIP Conference Proceedings (2014), pp. 1769–1771.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Aslam or Zulfiqar Ali Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Kalyar, M.A. & Raza, Z.A. Effect of Separate Zinc, Copper and Graphene Oxides Nanofillers on Electrical Properties of PVA Based Composite Strips. J. Electron. Mater. 48, 1116–1121 (2019). https://doi.org/10.1007/s11664-018-6793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6793-5

Keywords

Navigation