Log in

Molybdenum-Loaded Anatase TiO2 Nanoparticles With Enhanced Optoelectronics Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, optical and electrical properties of molybdenum nanoparticles (Mo-NPs)-loaded anatase TiO2 were investigated using x-ray diffraction, UV–Vis diffuse reflectance, and Fourier transform infrared and complex impedance spectroscopy. x-ray diffraction showed that Mo-NPs incorporation induced a decrease in particle size from 30 nm to 21 nm of TiO2 and TiO2-Mo, respectively, producing a slight structure expansion. Mo-NPs dispersion resulted in a slight decrease in the optical band gap energy from 3.85 eV to 3.51 eV. Slight shifts towards higher wavelengths were attributed to the change in the acceptor capacity level induced by Mo-NPs. In addition, the ac impedance studies show the effect of Mo-NPs incorporation that appeared to be responsible for conductance of enhancement. The conduction mechanism is based on space charge-limited current via deep levels with different energy positions in the band gap. The temperature dependence of electrical properties showed that both capacitance and conductance of TiO2-Mo samples increased with increasing temperature. At low frequency, the relaxation phenomenon is related to the surface effect. The results will be beneficial to further develo** titanium dioxide photo-catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu, Electrochim. Acta 116, 136 (2014).

    Google Scholar 

  2. S. Liu, Z. Wang, C. Yu, H.B. Wu, G. Wang, Q. Dong, J.Q.A. Eychmüller, and X.W. David, Adv. Mater. 25, 3467 (2013).

    Google Scholar 

  3. P. Roy, S. Berger, and P. Schmuki, Chem. Int. 50, 2939 (2011).

    Google Scholar 

  4. R. Bargougui, N. Bouazizi, W. Ben Soltan, A. Gadri, A. Azzouz, and S. Ammar, Appl. Phys. A 122, 10 (2016).

    Article  Google Scholar 

  5. M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007).

    Article  Google Scholar 

  6. M. Grtzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  7. A.L. Pnard, T. Gacoin, and J.P. Boilot, Chem. Res. 40, 895 (2007).

    Article  Google Scholar 

  8. E. Traversa, M.L. Di Vona, S. Licoccia, M. Sacerdoti, M.C. Carotta, L. Crema, and G. Martinelli, J. Sol-Gel. Sci. Technol. 22, 167 (2001).

    Article  Google Scholar 

  9. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, Sens. Actuators. B. Chem. 68, 189 (2000).

    Article  Google Scholar 

  10. G.N. Chaudhari, A.M. Bende, A.B. Bodade, S.S. Patil, and V.S. Sapkal, Sens. Actuators. B. Chem. 115, 297 (2006).

    Article  Google Scholar 

  11. R. Rella, J. Spadavecchia, M.G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato, and T. Tunno, Sens. Actuators. B. Chem. 127, 426 (2007).

    Article  Google Scholar 

  12. Y. Yang, G. Ruan, C. **ang, G. Wang, and J.M. Tour, J. Am. Chem. Soc. 136, 6190 (2014).

    Google Scholar 

  13. A. Al-Osta, V.V. Jadhav, N.A. Saad, R.S. Mane, M. Naushad, K.N. Hui, and S.H. Han, Scr. Mater. 104, 63 (2015).

    Article  Google Scholar 

  14. M. Salari, K. Konstantinov, and H.K. Liu, J. Mater. Chem. 21, 5128 (2011).

    Article  Google Scholar 

  15. M. Zhou, A.M. Glushenkov, O. Kartachova, Y. Li, and Y. Chen, J. Electrochem. Soc. 162, 5069 (2015).

    Google Scholar 

  16. Y.B. **e, Adv. Mater. Res. 148, 915 (2011).

    Google Scholar 

  17. H. Jha, R. Hahn, and P. Schmuki, Electrochim. Acta 55, 8887 (2010).

    Google Scholar 

  18. J. Yang, X. Wang, X. Yang, J. Li, X. Zhang, and J. Zhao, Electrochim. Acta 169, 232 (2015).

    Google Scholar 

  19. Y. Yang, D. Kim, M. Yang, and P. Schmuki, Chem. Commun. 47, 7748 (2011).

    Google Scholar 

  20. B. Liu and E.S. Aydil, J. Am. Chem. Soc. 131, 3990 (2009).

    Google Scholar 

  21. Z. Zhou, J. Fan, X. Wang, W. Zhou, Z. Du, and S. Wu, Appl. Mater. Interfaces 3, 4353 (2011).

    Google Scholar 

  22. S. Seok and J.H. Kim, Mater. Chem. Phys. 86, 176 (2004).

    Article  Google Scholar 

  23. M. Hamadanian, A.R. Vanani, and A. Majedi, J. Iran. Chem. Soc. 7, 52 (2010).

    Article  Google Scholar 

  24. K. Karthik, S.K. Pandian, and N.V. Jaya, Appl. Surf. Sci. 256, 6829 (2010).

    Article  Google Scholar 

  25. A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra, and A. Agarwal, J. Alloys. Comp. 549, 114 (2013).

    Article  Google Scholar 

  26. N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougui, S. Louhichi, L. Labiadh, R. BenSlama, B. Chaouachi, K. Khirouni, A. Houas, A. Azzouz, and J. Alloys, Compounds 25, 153 (2016).

    Google Scholar 

  27. N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, R. Benslama, B. Chaouachi, S. Ammar, and A. Azzouz, Ceram. Int. 42, 9418 (2016).

    Article  Google Scholar 

  28. N. Bouazizi, R. Bargougui, A. Oueslati, and R. Benslama, Adv. Mater. Lett. 6, 164 (2015).

    Article  Google Scholar 

  29. N. Bouazizi, R. Ouargli, S. Nousir, R. Benslama, and A. Azzouz, J. Phys. Chem. Solid. 77, 177 (2015).

    Article  Google Scholar 

  30. R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, and A. Dinia, J. Mater. Sci. Mater. Electron. 25, 2071 (2014).

    Google Scholar 

  31. S. Saha, A. Nandy, A.K. Meikap, and S.K. Pradhan, Mater. Res. Bull. 68, 74 (2015).

    Article  Google Scholar 

  32. D.P. Almond, C.C. Hunter, and A.R. Weast, J. Mater. Sci. 19, 3236 (1984).

    Article  Google Scholar 

  33. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  34. N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci-Mater. Electron. (2016). doi:10.1007/s10854-016-5235-5.

    Google Scholar 

  35. C.K. Maiti, S.K. Samanta, G.K. Dalapati, S.K. Nandi, and S. Chatterjee, J. Microelectron. Eng. 72, 253 (2004).

    Article  Google Scholar 

  36. N. Bouazizi, M. Khelil, F. Ajala, T. Boudharaa, A. Benghnia, H. Lachheb, R. BenSlama, B. Chaouachi, A. M′nif, and A. Azzouz, Int. J. Hydrogen Energy 4, 11241 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Bargougui or N. Bouazizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bargougui, R., Bouazizi, N., Ammar, S. et al. Molybdenum-Loaded Anatase TiO2 Nanoparticles With Enhanced Optoelectronics Properties. J. Electron. Mater. 46, 85–91 (2017). https://doi.org/10.1007/s11664-016-4947-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4947-x

Keywords

Navigation