Log in

Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper investigates the fabrication of Ag films through the electrospray deposition (ESD) technique on sub-millimeter-thick acid-etched rough polydimethylsiloxane (PDMS) substrates having both low and high modulus of elasticity. The main focus of the study is on the stretchable behavior of ESD-deposited Ag nanoparticles-based thin films on these substrates when subjected to axial strains. Experimental results suggest that the as-fabricated films on thin acid-etched rough low modulus PDMS has an average stretchability of 5.6% with an average increase in the resistance that is 23 times that of the initial resistance at electrical failure (complete rupture of the films). Comparatively, the stretchability of Ag films on the high modulus PDMS was found to be 3 times higher with 4.65 times increase in the resistance at electrical failure. Also, a high positive value of the piezoresistive coefficient for these films suggests that the resistivity changes during stretching, and thus deviation from the simplified models is inevitable. Based on these results, new models are presented that quantify the changes in resistance with strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C.B. Mannsfeld, et al., Nat. Mater. 9, 859 (2010).

    Article  Google Scholar 

  2. J.H. Lee, D. Yang, S. Kim, I. Park, and I.E.E.E. Int, Conf. Transducers (2013). doi:10.1109/Transducers.2013.6627344.

    Google Scholar 

  3. J. Kim, W. Jung, and H.S. Kim, Sensors Actuators A Phys. 140, 225 (2007).

    Article  Google Scholar 

  4. D.J. Lipomi, B.C.-K. Tee, M. Vosgueritchian, and Z. Bao, Adv. Mater. 23, 1771 (2011).

    Article  Google Scholar 

  5. J.-H. Lee, et al., Adv. Mater. 26, 765 (2014).

    Article  Google Scholar 

  6. T. Someya, Stretchable Electronics (Weinheim: Wiley-VCH, 2013).

    Google Scholar 

  7. T. Loher, M. Seckel, and A. Ostmann, Proceedings of the 3rd IEEE Electronic System Integration Technology Conference, Berlin, Germany (2010). doi:10.1109/ESTC.2010.5642945

  8. C.-K. Cho, et al., Sol. Energy Mater. Sol. Cells 95, 3269 (2011).

    Article  Google Scholar 

  9. P.O. Renault, P. Villain, C. Coupeau, P. Goudeau, and K.F. Badawi, Thin Solid Films 424, 267 (2003).

    Article  Google Scholar 

  10. S. Kim, S. Won, G.-D. Sim, I. Park, and S.-B. Lee, Nanotechnology 24, 085701 (2013).

    Article  Google Scholar 

  11. P. Gutraf, et al., NPG Asia Mater. 5, 62 (2013).

    Article  Google Scholar 

  12. M.M. Hamasha, K. Alzoubi, and S. Lu, J. Disp. Technol. 7, 426 (2011).

    Article  Google Scholar 

  13. T. Li and Z. Suo, Int. J. Solids Struct. 43, 2351 (2006).

    Article  Google Scholar 

  14. D.S. Gray, J. Tien, and C.S. Chen, Adv. Mater. 16, 393 (2004).

    Article  Google Scholar 

  15. A.P. Robinson, I. Minev, I.M. Graz, and S.P. Lacour, Langmuir 27, 4279 (2011).

    Article  Google Scholar 

  16. C.L. Tuinea-Bobe, et al., J. Micromech. Microeng. 21, 115010 (2011).

    Article  Google Scholar 

  17. N. Lambricht, T. Pardoen, and S. Yunus, Acta Mater. 61, 540 (2013).

    Article  Google Scholar 

  18. S. Chung, et al., Appl. Phys. Lett. 98, 153110 (2011).

    Article  Google Scholar 

  19. T. Akter, W.S. Kim, and A.C.S. Appl, Mater. Interfaces 4, 1855 (2012).

    Article  Google Scholar 

  20. N.M. Muhammad, et al., Curr. Appl. Phys. 11, S68 (2011).

    Article  Google Scholar 

  21. C.E. Murphy, et al., J. Appl. Phys. 110, 093523 (2011).

    Article  Google Scholar 

  22. M.S. White, et al., Nat. Photonics 7, 811 (2013).

    Article  Google Scholar 

  23. J. Jones, S.P. Lacour, S. Wagner, and Z. Suo, J. Vac. Sci. Technol. 22, 1723 (2004).

    Article  Google Scholar 

  24. C.W. Park, et al., Microelectron. Eng. 113, 55 (2014).

    Article  Google Scholar 

  25. M.T. Lee, D. Lee, A. Sherry, and C.P. Grigoropoulos, J. Micromech. Microeng. 21, 095018 (2011).

    Article  Google Scholar 

  26. J. Jeong, S. Kim, J. Cho, and Y. Hong, IEEE Electron Device Lett. 30, 1284 (2009).

    Article  Google Scholar 

  27. D.-H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, and S. Wang, Science 333, 838 (2011).

    Article  Google Scholar 

  28. S. Wang, M. Li, J. Wu, D.-H. kim, and N. Lu, J. Appl. Mech. 79, 031022 (2012).

    Article  Google Scholar 

  29. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, Microelectron. Eng. 85, 1289 (2008).

    Article  Google Scholar 

  30. J.N. Lee, C. Park, and G.M. Whitesides, Anal. Chem. 75, 6544 (2003).

    Article  Google Scholar 

  31. C.C. Esteves, et al., Polymer (Guildf). 50, 3955 (2009).

    Article  Google Scholar 

  32. N. Duraisamy, N.M. Muhammad, M.-T. Hyun, and K.-H. Choi, Mater. Lett. 92, 227 (2013).

    Article  Google Scholar 

  33. N.M. Muhammad, A.M. Naeem, N. Duraisamy, D.-S. Kim, and K.H. Choi, Thin Solid Films 520, 1751 (2012).

    Article  Google Scholar 

  34. K.H. Choi, S. Khan, H.W. Dang, Y.H. Doh, and S.J. Hong, Jpn. J. Appl. Phys. 49, 05EC08 (2010).

    Google Scholar 

  35. W. Fang and C.-Y. Lo, Sensors Actuators A Phys. 84, 310 (2000).

    Article  Google Scholar 

  36. U. Lang, P. Rust, B. Schoberle, and J. Dual, Microelectron. Eng. 86, 330 (2009).

    Article  Google Scholar 

  37. P. Mandlik, S.P. Lacour, J.W. Li, S.Y. Chou, and S. Wagner, IEEE Electron Device Lett. 27, 650 (2006).

    Article  Google Scholar 

  38. N. Lu, X. Wang, Z. Suo, and J. Vlassak, Appl. Phys. Lett. 91, 221909 (2007).

    Article  Google Scholar 

  39. T. Li, Z. Huang, Z. Suo, S.P. Lacour, and S. Wagner, Appl. Phys. Lett. 85, 3435 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.H. Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, S., Cho, K., Kang, C. et al. Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition. J. Electron. Mater. 44, 2514–2521 (2015). https://doi.org/10.1007/s11664-015-3813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3813-6

Keywords

Navigation