Log in

Dielectric Dispersion, Diffuse Phase Transition, and Electrical Properties of BCT–BZT Ceramics Sintered at a Low-Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lead-free ceramics 0.50Ba0.9Ca0.1TiO3–0.50BaTi1−x Zr x O3 (BCT–BZT) were prepared via sintering BCT and BZT nanoparticles, which were synthesized using a modified Pechini polymeric precursor method, at a low temperature of 1260°C. The relative densities of the ceramics prepared with different zirconium contents (x) were all above 95.3%, reaching a maximum of 97% when x = 0.08. X-ray diffraction results confirmed the onset of phase transformation from orthorhombic to rhombohedral symmetry with increasing zirconium contents, and the polymorphic phase transition was observed at x = 0.10. The dielectric dispersion, diffuse phase transition (DPT), and relaxor-like ferroelectric characteristics as a function of zirconium content were thoroughly studied. Optimum physical properties, remnant polarization (P r) = 16.4 μC/cm2, piezoelectric constant (d 33) = ~240 pC/N, and electromechanical coupling factor (k p) = 0.22, were obtained at x = 0.10. The findings of the current DPT behavior study of BCT–BZT ceramics are believed to be insightful to the development of ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, and H.C. Jaffe, Piezoelectric Ceramics (New York: Academic, 1971), pp. 185–212.

    Google Scholar 

  2. M.A. Mohiddon, A. Kumar, and K.L. Yadav, Phys. B 395, 1 (2007).

    Article  Google Scholar 

  3. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, and T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998).

    Article  Google Scholar 

  4. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005).

    Article  Google Scholar 

  5. T.R. Shrout and S.J. Zhang, J. Electroceram. 19, 111 (2007).

    Google Scholar 

  6. E. Aksel and J.L. Jones, Sensors 10, 1935 (2010).

    Article  Google Scholar 

  7. R.Z. Zuo, X.S. Fang, and C. Ye, Appl. Phys. Lett. 90, 092904 (2007).

    Article  Google Scholar 

  8. D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, Funct. Mater. Lett. 3, 5 (2010).

    Article  Google Scholar 

  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).

    Article  Google Scholar 

  10. T. Takenaka, H. Nagata, and Y. Hiruma, Jpn. J. Appl. Phys. 47, 3787 (2008).

    Article  Google Scholar 

  11. S.O. Leontsev and R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010).

    Article  Google Scholar 

  12. J. Chen, X.L. Chen, F. He, Y.L. Wang, H.F. Zhou, and L. Fang, J. Electron. Mater. 43, 1112 (2014).

    Article  Google Scholar 

  13. W.F. Liu and X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  14. T. Maiti, R. Guo, and A.S. Bhalla, J. Appl. Phys. 100, 114106 (2006).

    Article  Google Scholar 

  15. Y.L. Wang, L.T. Li, J.Q. Qi, and Z.L. Gui, Ceram. Int. 28, 657 (2002).

    Article  Google Scholar 

  16. Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, and P. Wang, J. Mater. Sci. 25, 1828 (2014).

    Google Scholar 

  17. D. Liang, X. Zhu, J. Zhu, J. Zhu, and D. **ao, Ceram. Int. 40, 2585 (2014).

    Article  Google Scholar 

  18. W. Liu, W. Chen, L. Yang, L. Zhang, Y. Wang, C. Zhou, S. Li, and X. Ren, Appl. Phys. Lett. 89, 172908 (2006).

    Article  Google Scholar 

  19. D. Damjanovic, Appl. Phys. Lett. 97, 062906 (2010).

    Article  Google Scholar 

  20. M.R. Panigrahi and S. Panigrahi, Phys. B 405, 2556 (2010).

    Article  Google Scholar 

  21. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, and K. Sreenivas, Mater. Chem. Phys. 112, 858 (2008).

    Article  Google Scholar 

  22. P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, and C.L. Wang, Appl. Phys. Lett. 94, 032902 (2009).

    Article  Google Scholar 

  23. P. Wang, Y. Li, and Y. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011).

    Article  Google Scholar 

  24. Y.S. Tian, Y.S. Gong, Z.L. Zhang, and D.W. Meng, J. Mater. Sci. 25, 5467 (2014).

    Google Scholar 

  25. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, and Q.X. Liu, Scripta Mater. 61, 68 (2009).

    Article  Google Scholar 

  26. L. Dong, D.S. Stone, and R.S. Lakes, J. Appl. Phys. 111, 084107 (2012).

    Article  Google Scholar 

  27. J. Wu, D. **ao, W. Wu, Q. Chen, J. Zhu, Z. Yang, and J. Wang, J. Eur. Ceram. Soc. 32, 891 (2012).

    Article  Google Scholar 

  28. S.W. Zhang, H. Zhang, B.P. Zhang, and S. Yang, J. Alloy. Compd. 506, 131 (2010).

    Article  Google Scholar 

  29. N. Pisitpipathsin, P. Kantha, K. Pengpat, and G. Rujijanagul, Ceram. Int. 39, S35 (2013).

    Article  Google Scholar 

  30. W. Lin, L. Fan, D. Lin, Q. Zheng, X. Fan, and H. Sun, Curr. Appl. Phys. 13, 159 (2013).

    Article  Google Scholar 

  31. X. Tang, J. Wang, X. Wang, and H. Chan, Solid State Commun. 131, 163 (2004).

    Article  Google Scholar 

  32. L. Gao, J.W. Zhai, Y.W. Zhang, and X. Yao, J. Appl. Phys. 107, 064105 (2010).

    Article  Google Scholar 

  33. S.W. Zhang, H.L. Zhang, B.P. Zhang, and G.L. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009).

    Article  Google Scholar 

  34. X.G. Tang and H.L.W. Chan, J. Appl. Phys. 97, 034109 (2005).

    Article  Google Scholar 

  35. Z. Yu, C. Ang, R. Guo, and A. Bhalla, Mater. Lett. 61, 326 (2007).

    Article  Google Scholar 

  36. Z. Sun, Y. Pu, Z. Dong, Y. Hu, P. Wang, X. Liu, and Z. Wang, Mater. Sci. Eng. B 185, 114 (2014).

    Article  Google Scholar 

  37. X. Tang, K.H. Chew, and H. Chan, Acta Mater. 52, 5177 (2004).

    Article  Google Scholar 

  38. S. Ye, J. Fuh, L. Lu, Y.L. Chang, and J.R. Yang, RSC Adv. 3, 20693 (2013).

    Article  Google Scholar 

  39. T. Maiti, R. Guo, and A. Bhalla, J. Am. Ceram. Soc. 91, 1769 (2008).

    Article  Google Scholar 

  40. T. Matthew, Eur. J. Phys. 21, 459 (2000).

    Article  Google Scholar 

  41. J. Hao, W. Bai, and W. Li, J. Am. Ceram. Soc. 95, 1998 (2012).

    Article  Google Scholar 

  42. P. Parjansri, S. Eitssayeam, and U. Intatha, (IEEE, ISAF/PFM, 2013), pp. 115-118.

  43. W.J. Merz, Phys. Rev. 77, 52 (1950).

    Article  Google Scholar 

  44. P. Zheng, K. Song, H. Qin, L. Zheng, and L. Zheng, Curr. Appl. Phys. 13, 1064 (2013).

    Article  Google Scholar 

  45. O.P. Thakur, C. Prakash, and A.R. James, J. Alloy. Compd. 470, 548 (2009).

    Article  Google Scholar 

  46. I. Coondoo, N. Panwar, H. Amorín, M. Alguero, and A.L. Kholkin, J. Appl. Phys. 113, 214107 (2013).

    Article  Google Scholar 

  47. Y.J. Dai, X.W. Zhang, and K.P. Chen, Appl. Phys. Lett. 94, 042905 (2009).

    Article  Google Scholar 

  48. N. Ma, B.P. Zhang, W.G. Yang, and D. Guo, J. Eur. Ceram. Soc. 32, 1059 (2012).

    Article  Google Scholar 

  49. P.F. Zhou, B.P. Zhang, L. Zhao, X.K. Zhao, L.F. Zhu, L.Q. Cheng, and J.F. Li, Appl. Phys. Let. 103, 172904 (2013).

    Article  Google Scholar 

  50. W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, Mater. Lett. 64, 2325 (2010).

    Article  Google Scholar 

  51. M.C. Ehmke, J. Daniels, J. Glaum, M. Hoffman, J.E. Blendell, and K.J. Bowman, J. Am. Ceram. Soc. 96, 2913 (2013).

    Article  Google Scholar 

  52. M.J. Haun, E. Furman, S.J. Jang, and L.E. Cross, Ferroelectrics 99, 13 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Fundamental Research Funds for National University (CUG120 118), Innovation Program of China University of Geosciences (No. 201310491013), and State Key Laboratory of Advanced Technology for Materials Synthesis Processing (Wuhan University of Technology, 2012-KF-3) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yansheng Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Gong, Y., Meng, D. et al. Dielectric Dispersion, Diffuse Phase Transition, and Electrical Properties of BCT–BZT Ceramics Sintered at a Low-Temperature. J. Electron. Mater. 44, 2890–2897 (2015). https://doi.org/10.1007/s11664-015-3727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3727-3

Keywords

Navigation