Log in

The Effect of Do** with the Polymer Metallic Complex Poly Zinc Acrylate on Superconducting Bulk MgB2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

In this work, the effect of do** with 5% to 20% poly zinc acrylate (PZA) complexes on MgB2 phase formation was studied. The changes of the lattice parameter and the amount of substituted carbon in the microstructure as well as the critical temperature and the critical current density (J c) of bulk MgB2 have been studied systematically. Both differential thermal analysis–thermogravimetric (DTA–TG) analysis and infrared (IR) spectrometry results show that the PZA was decomposed between 400°C and 600°C, and the main decomposition products were carbonized polymers and ZnO. The lattice parameter a in all PZA-doped MgB2 samples was decreased by different degrees, which indicates gradual substitution of carbon on the boron sites in the MgB2 crystal structure. Compared with the undoped sample, the J c values of all the doped samples were enhanced by about an order of magnitude under high magnetic fields. The J c value of the MgB2 sample with 20% PZA do** sintered at 800°C for 1 h reached 8 kA/cm2 at 5 K and 8 T. Transmission electron microscopy (TEM) images revealed a considerable amount of second-phase particles of ~5 nm size, and a high density of dislocations was observed in the MgB2 grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

    Article  CAS  Google Scholar 

  2. W.X. Li, Y. Li, M.Y. Zhu, R.H. Chen, S.X. Dou, M.J. Qin, X. Xu, and P. Yao, Physica C 460–462, 310 (2007).

    Article  Google Scholar 

  3. V.R.R. Medicherla, S. Patil, R.S. Singh, and K. Maiti, Appl. Phys. Lett. 90, 052507 (2007).

    Article  Google Scholar 

  4. C.H. Jiang, T. Nakane, and H. Kumakura, Physica C 436, 118 (2006).

    Article  CAS  Google Scholar 

  5. C. Cheng and Y. Zhao, Physica C 463–465, 220 (2007).

    Article  Google Scholar 

  6. W.K. Yeoh and S.X. Dou, Physica C 456, 170 (2007).

    Article  CAS  Google Scholar 

  7. S.K. Chen and J.L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 065009 (2009).

    Article  Google Scholar 

  8. B. Qu, X.D. Sun, J.-G. Li, Z.M. **u, S.H. Liu, and C.P. Xue, Supercond. Sci. Technol. 22, 015027 (2009).

    Article  Google Scholar 

  9. A. Rao, B. Gahtori, S.K. Agarwal, T. Chakraborty, C.K. Sarkar, and A. Das, Physica C 469, 64 (2009).

    Article  CAS  Google Scholar 

  10. T. Kuroda, T. Nakane, and H. Kumakura, Physica C 469, 9 (2009).

    Article  CAS  Google Scholar 

  11. W.K. Yeoh, J. Horvat, J.H. Kim, X. Xu, and S.X. Dou, Appl. Phys. Lett. 90, 122502 (2007).

    Article  Google Scholar 

  12. Y. Ma, X. Zhang, G. Nishijima, K. Watanabe, S. Awaji, and X. Bai, Appl. Phys. Lett. 88, 072502 (2006).

    Article  Google Scholar 

  13. Z. Gao, Y. Ma, X. Zhang, D. Wang, J. Wang, S. Awaji, K. Watanabe, and B. Liu, Supercond. Sci. Technol. 21, 105020 (2008).

    Article  Google Scholar 

  14. S. Soltanian, J. Horvat, X.L. Wang, P. Munroe, and S.X. Dou, Physica C 390, 185 (2003).

    CAS  Google Scholar 

  15. Y. Zhao, C.H. Cheng, X.F. Rui, H. Zhang, P. Munroe, H.M. Zeng, N. Koshizuka, and M. Murakami, Appl. Phys. Lett. 83, 2916 (2003).

    Article  CAS  Google Scholar 

  16. A. Vajpayee, H. Huhtinen, V.P.S. Awana, A. Gupta, R. Rawat, N.P. Lalla, H. Kishan, R. Laiho, I. Felner, and A.V. Narlikar, Supercond. Sci. Technol. 20, S155 (2007).

    Article  CAS  Google Scholar 

  17. S.X. Dou, W.K. Yeoh, O. Shcherbakova, J. Horvat, J.H. Kim, A.V. Pan, D. Wexler, Y. Li, W.X. Li, Z.M. Ren, P. Munroe, and J.Z. Cui, Appl. Phys. Lett. 89, 202504 (2007).

    Article  Google Scholar 

  18. J.H. Kim, W.K. Yeoh, X. Xu, S.X. Dou, P. Munroe, M. Rindfleisch, and M. Tomsic, Physica C 449, 133 (2006).

    Article  CAS  Google Scholar 

  19. J.H. Kim, W.K. Yeoh, M.J. Qin, X. Xu, S.X. Dou, P. Munroe, H. Kumakura, T. Nakane, and C.H. Jiang, Appl. Phys. Lett. 89, 122510 (2006).

    Article  Google Scholar 

  20. W.K. Yeoh, J.H. Kim, J. Horvat, S.X. Dou, and P. Munroe, Supercond. Sci. Technol. 19, L5 (2006).

    Article  CAS  Google Scholar 

  21. X.F. Pan, Y. Zhao, Y. Feng, Y. Yang, and C.H. Cheng, Physica C 468, 1169 (2008).

    Article  CAS  Google Scholar 

  22. W. Gruner, M. Herrmann, A. Nilsson, H. Hermann, and W. Häßler, Supercond. Sci. Technol. 20, 601 (2007).

    Article  CAS  Google Scholar 

  23. S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, and M. Tomsic, Appl. Phys. Lett. 81, 3419 (2002).

    Article  CAS  Google Scholar 

  24. K. Vinod, N. Varghese, S.B. Roy, and U. Syamaprasad, Supercond. Sci. Technol. 22, 055009 (2009).

    Article  Google Scholar 

  25. Y. Kimishima, T. Okuda, M. Uehara, and T. Kuramoto, Physica C 463–465, 286 (2007).

    Article  Google Scholar 

  26. A. Matsumoto, H. Kumakura, H. Kitaguchi, B.J. Senkowicz, M.C. Jewell, E.E. Hellstrom, Y. Zhu, P.M. Voyles, and D.C. Larbalestier, Appl. Phys. Lett. 89, 132508 (2006).

    Article  Google Scholar 

  27. C.J. Kinane, A.K. Suszka, C.H. Marrows, B.J. Hickey, D.A. Arena, J. Dvorak, T.R. Charlton, and Sean. Langridge, Appl. Phys. Lett. 89, 092507 (2005).

    Article  Google Scholar 

  28. S.X. Dou, O. Shcherbakova, W.K. Yeoh, J.H. Kim, S. Soltanian, X.L. Wang, C. Senatore, R. Flukiger, M. Dhalle, O. Husnjak, and E. Babic, Phys. Rev. Lett. 98, 097002 (2007).

    Article  CAS  Google Scholar 

  29. A. Asthana, A. Matsumoto, H. Kitaguchi, Y. Matsui, T. Hara, K. Watanabe, H. Yamada, N. Uchiyama, and H. Kumakura, Supercond. Sci. Technol. 21, 115013 (2008).

    Article  Google Scholar 

  30. S.C. Yan, L. Zhou, G. Yan, and Y.F. Lu, Physica C 468, 1032 (2008).

    Article  CAS  Google Scholar 

  31. S. Zhou, A.V. Pan, D. Wexler, and S.X. Dou, Adv. Mater. 19, 1373 (2007).

    Article  CAS  Google Scholar 

  32. X.L. Wang, Z.X. Cheng, and S.X. Dou, Appl. Phys. Lett. 90, 042501 (2007).

    Article  Google Scholar 

  33. Z. Gao, Y. Ma, X. Zhang, D. Wang, Z. Yu, K. Watanabe, H. Yang, and H. Wen, Supercond. Sci. Technol. 20, 485 (2007).

    Article  CAS  Google Scholar 

  34. A. Vajpayee, V.P.S. Awana, S. Balamurugan, E. Takayama-Muromachi, H. Kishan, and G.L. Bhalla, Physica C 466, 46 (2007).

    Article  CAS  Google Scholar 

  35. Y. Zhang, S.H. Zhou, C. Lu, K. Konstantinov, and S.X. Dou, Supercond. Sci. Technol. 22, 015025 (2009).

    Article  Google Scholar 

  36. D. Wang, X. Zhang, Z. Gao, L. Wang, Y. Ma, S. Awaji, G. Nishijima, K. Watanabe, and E. Mossang, Physica C 469, 23 (2009).

    Article  CAS  Google Scholar 

  37. Y.J. Kim, B.-H. Jun, K.S. Tan, B.G. Kim, J.M. Sohn, and C.-J. Kim, Physica C 468, 1372 (2008).

    Article  CAS  Google Scholar 

  38. R. Zeng, L. Lu, and S.X. Dou, Supercond. Sci. Technol. 21, 085003 (2008).

    Article  Google Scholar 

  39. B.-H. Jun, Y.-J. Kim, K.S. Tan, and C.-J. Kim, Supercond. Sci. Technol. 21, 105006 (2008).

    Article  Google Scholar 

  40. A. Vajpayee, V.P.S. Awana, G.L. Bhalla, P.A. Bhobe, A.K. Nigam, and H. Kishan, Supercond. Sci. Technol. 22, 015016 (2009).

    Article  Google Scholar 

  41. E. Fitzer, K. Mueller, and W. Schaefer, Chemistry and Physics of Carbon: A Series of Advances (New York, 1971), vol. 7, p. 231.

  42. Z.W. Zhou, J. Funct. Mater. 1, 32 (2004).

    Google Scholar 

  43. S.M. Kazakov, M. Angst, and J. Karpinski, Solid State Commun. 119, 1 (2001).

    Article  CAS  Google Scholar 

  44. J.H. Kim, S.X. Dou, J.L. Wang, D.Q. Shi, X. Xu, M.S.A. Hossain, W.K. Yeoh, S. Choi, and T. Kiyoshi, Supercond. Sci. Technol. 20, 448 (2007).

    Article  CAS  Google Scholar 

  45. B.-H. Jun and C.-J. Kim, Supercond. Sci. Technol. 20, 980 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Suo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Suo, H., Ma, L. et al. The Effect of Do** with the Polymer Metallic Complex Poly Zinc Acrylate on Superconducting Bulk MgB2 . J. Electron. Mater. 40, 1369–1376 (2011). https://doi.org/10.1007/s11664-011-1535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1535-y

Keywords

Navigation