Log in

Influence of dual-frequency plasma-enhanced chemical-vapor deposition Si3N4 passivation on the electrical characteristics of AlGaN/GaN heterostructure field-effect transistors

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of dielectric stress on the direct current (DC) electrical characteristics of AlGaN/GaN heterostructure field-effect transistors (HFETs) has been investigated. Dual-frequency plasma deposition was used to vary the amount of stress induced by a passivating dielectric on the surface of the devices. Initial data suggested a strong influence from the induced dielectric stress, but the low-frequency, radio-frequency (RF) excitation of the plasma deposition process was found to induce a severe nonreversible damage to the exposed AlGaN surface through N ion bombardment. The consequence is a drastic reduction of the sheet carrier concentration and mobility of the two-dimensional electron gas (2DEG). Subsequently, an alternative damage-free technique using a helium precursor was used to obtain compressive films. Based on the results, uniform dielectric stress has a minimal impact on the polarization charges within the AlGaN barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.F. Wu, D. Kapolner, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra, IEEE Trans. Electron Dev. 48, 586 (2001).

    Article  CAS  Google Scholar 

  2. L.F. Eastman et al., IEEE Trans. Electron Dev. 48, 479 (2001).

    Article  CAS  Google Scholar 

  3. S.T. Sheppard, K. Doverspike, W.L. Pribble, S.T. Allen, and J.W. Palmour, IEEE Electron Dev. Lett. 20, 161 (1999).

    Article  CAS  Google Scholar 

  4. C. Lee, H. Wang, J. Yang, L. Witkowski, M. Muir, M.A. Khan, and P. Saunier, Electron. Lett. 38, 924 (2002).

    Article  CAS  Google Scholar 

  5. J.S. Moon, M. Micovic, P. Janke, P. Hashimoto, W.S. Wong, R.D. Widman, L. McCray, A. Kurdoghlian, and C. Nguyen, Electron. Lett. 37, 528 (2001).

    Article  CAS  Google Scholar 

  6. M. Micovic, N.X. Nguyen, P. Janke, W.S. Wong, P. Hashimoto, L.M. McCray, and C. Nguyen, Electron. Lett. 36, 358 (2000).

    Article  CAS  Google Scholar 

  7. B.M. Green, K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, and L.F. Eastman, IEEE Electron Dev. Lett. 21, 268 (2000).

    Article  CAS  Google Scholar 

  8. B. Boudart, C. Gaquiere, Y. Guhel, J.C. de Jaeger, and M.A. Poisson, Electron. Lett. 37, 527 (2001).

    Article  CAS  Google Scholar 

  9. R.A. Davies, D.J. Bazley, S.K. Jones, H.A Lovekin, W.A. Phillips, R.H. Wallis, J.C. Birbeck, T. Martin, and M.J. Uren, Proc. 8th IEEE Int. Symp. on High Performance Electron Devices for Microwave and Optoelectronic Applications (EDMO 2000) (Piscataway, NJ: IEEE, 2000), pp. 76–81.

    Book  Google Scholar 

  10. X.Z. Dang, E.T. Yu, E.J. Piner, and B.T. McDermott, J. Appl. Phys. 90, 1357 (2001).

    Article  CAS  Google Scholar 

  11. T.R. Prunty, J.A. Smart, E.M. Chumbes, B.K. Ridley, L.F. Eastman, and J.R. Shealy, Proc. 2000 IEEE/Cornell Conf. on High Performance Devices (Piscataway, NJ: IEEE, 2000), pp. 208–214.

    Book  Google Scholar 

  12. W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, Solid-State Electron. 46, 1441 (2002).

    Article  CAS  Google Scholar 

  13. J.S. Lee, A. Vescan, A. Wieszt, R. Dietrich, H. Leier, and Y.S. Kwon, Electron. Lett. 37, 130 (2001).

    Article  CAS  Google Scholar 

  14. R. Gaska, J.W. Yang, A.D. Bykhovski, M.S. Shur, V.V. Kaminski, and S.M. Soloviov, Appl. Phys. Lett. 72, 64 (1998).

    Article  CAS  Google Scholar 

  15. A.M. Conway, P.M. Asbeck, and J.S. Moon (Paper presented at 45th Electronic Materials Conf., Salt Lake City, UT, 25–27 June 2003).

  16. F. Bernadini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).

  17. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, and M.A. Khan, J. Appl. Phys. 77, 1616 (1995).

    Article  CAS  Google Scholar 

  18. K. Shimada, T. Sato, and K. Suzuki, J. Appl. Phys. 84, 4951 (1998).

    Article  CAS  Google Scholar 

  19. T. Hashizume, R. Nakasaki, S. Ootomo, S. Oyama, and H. Hasegawa, IEICE Trans. Electron. 10, 1455 (2001).

    Google Scholar 

  20. B. Luo, J.W. Johnson, F. Ren, K.W. Baik, and S.J. Pearton, Solid-State Electron. 46, 705 (2002).

    Article  CAS  Google Scholar 

  21. K.H. Baik, P.Y. Park, B. Luo, K.P. Lee, J.H. Shin, C.R. Abernathy, W.S. Hobson, S.J. Pearton, and F. Ren, Solid-State Electron. 45, 2093 (2001).

    Article  CAS  Google Scholar 

  22. E.P. van de Ven, I. Connick, and A.S. Harrus, Proc. 7th Int. IEEE VLSI Multilevel Interconnection Conf. (New York: IEEE Electron Devices Society, 1990) pp. 194–201.

    Book  Google Scholar 

  23. F. Myers and T. Cale, J. Electrochem. Soc. 139, 3587 (1992).

    Article  CAS  Google Scholar 

  24. D.M. Dobkin, Fundamentals of Chemical Vapor Deposition, http://www.batnet.com/enigmatics/semiconductor_processing/CVD_Fundamentals/Fundamentals_of_CVD.html

  25. S.G. Malhotra, Z.U. Rek, S.M. Yalisove, and J.C. Belello, Thin Solid Films 37, 45 (1997).

    Article  Google Scholar 

  26. G. Simin, A. Koudymov, A. Tarakji, X. Hu, J. Yang, M.A. Khan, M.S. Shur, and R. Gaska, Appl. Phys. Lett. 79, 2651 (2001).

    Article  CAS  Google Scholar 

  27. X.A. Cao, X.A. Cao, S.J. Pearton, G.T. Dang, A.P. Zhang, F. Ren, R.G. Wilson, and J.M. van Hove, J. Appl. Phys. 87, 1091 (2000).

    Article  CAS  Google Scholar 

  28. C. Uzan-Saguy, J. Salzman, R. Kalish, V. Richter, U. Tish, S. Zamir, and S. Prawer, Appl. Phys. Lett. 74, 2441 (1999).

    Article  CAS  Google Scholar 

  29. S.O. Kucheyev, J.S. Williams, J. Zou, S.J. Pearton, and Y. Nakagawa, Appl. Phys. Lett. 79, 602 (2001).

    Article  CAS  Google Scholar 

  30. L.M. Terman, Solid-State Electron. 5, 285 (1962).

    Article  CAS  Google Scholar 

  31. E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley, 1982), pp. 319–370.

    Google Scholar 

  32. W.S. Tan, P.A. Houston, P.J. Parbrook, D.A. Wood, G. Hill, and C.R. Whitehouse, Appl. Phys. Lett. 80, 3207 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W.S., Houston, P.A., Hill, G. et al. Influence of dual-frequency plasma-enhanced chemical-vapor deposition Si3N4 passivation on the electrical characteristics of AlGaN/GaN heterostructure field-effect transistors. J. Electron. Mater. 33, 400–407 (2004). https://doi.org/10.1007/s11664-004-0191-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0191-x

Key words

Navigation