Log in

Full-Process Numerical Simulation of Flow, Heat Transfer and Solidification for Hot Stam** Steel Manufactured via Thin Slab Continuous Casting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Thin slab casting and rolling (TSCR) is a near-net-shape manufacturing process and a key development technology in China's iron and steel industry. This study uses cross-scale calculations to analyze the complete process of thin slab casting. The focus is on simulating and predicting the final solidification structure by adjusting process parameters. The aim is to enable further investigation into material performance and establish a foundation for researching deformation and phase transformation. To achieve this, a coupled model has been developed to simulate the entire thin slab casting process, using hot stam** steel as the research subject. The model encompasses fluid flow, heat transfer, and solidification. The study identifies the optimal combination for flow field, temperature distribution, and equiaxed grain ratio within the specified parameter range at a casting speed of 4.0 m/min and a superheat of 40 °C. The aim of the study is to establish an integrated computational materials engineering (ICME) research system for near-net-shape automotive steel casting processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. J. Sun, W. Peng, J. Ding, X. Li, and D. Zhang: Metals, 2018, vol. 8, pp. 1–10. https://doi.org/10.3390/met8080597.

    Article  CAS  Google Scholar 

  2. L. Wang, C. Deng, M. Dong, L. Shi, and J. Zhang: J. Iron. Steel Res. Int., 2012, vol. 19, pp. 1–6. https://doi.org/10.1016/S1006-706X(12)60051-X.

    Article  Google Scholar 

  3. X. **, Y. Gong, X. Han, H. Du, W. Ding, B. Zhu, Y. Zhang, Y. Feng, M. Ma, B. Liang, Y. Zhao, Y. Li, J. Zheng, and Z. Shi: Acta Metall. Sin., 2020, vol. 56, pp. 411–28. https://doi.org/10.11900/0412.1961.2019.00381.

    Article  CAS  Google Scholar 

  4. J. Majta and A. Bator: J. Mater. Process. Technol., 2002, vol. 125, pp. 77–83. https://doi.org/10.1016/S0924-0136(02)00288-1.

    Article  Google Scholar 

  5. D. Pan, H. Zhong, Q. Guo, Y. Li, Y. **ao, and K. Zhang: Mater. Lett., 2022, vol. 327, p. 133028. https://doi.org/10.1016/j.matlet.2022.133028.

    Article  CAS  Google Scholar 

  6. Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2020, vol. 47, pp. 1135–47. https://doi.org/10.1080/03019233.2019.1674590.

    Article  CAS  Google Scholar 

  7. Y. Sheng, X. Meng, X. Liu, and Z. Zhou: Steel Res. Int., 2023, vol. 94, p. 2200874. https://doi.org/10.1002/srin.202200874.

    Article  CAS  Google Scholar 

  8. A. Maurya, R. Kumar, and P. Jha: J. Manuf. Process., 2020, vol. 60, pp. 596–607. https://doi.org/10.1016/j.jmapro.2020.11.003.

    Article  Google Scholar 

  9. J. Mahmoudi: J. Manuf. Process., 2022, vol. 77, pp. 561–87. https://doi.org/10.1016/j.jmapro.2022.03.035.

    Article  Google Scholar 

  10. S. Yu, M. Long, D. Chen, H. Fan, H. Yu, H. Duan, X. **e, and T. Liu: J. Mater. Process. Technol., 2019, vol. 270, pp. 157–67. https://doi.org/10.1016/j.jmatprotec.2019.02.009.

    Article  Google Scholar 

  11. C. Dürr, I. Rapaport, and G. Theyssier: Theor. Comput. Sci., 2004, vol. 322, pp. 355–68. https://doi.org/10.1016/j.tcs.2004.03.017.

    Article  Google Scholar 

  12. M. Zappulla, S. Cho, S. Koric, H. Lee, S. Kim, and B. Thomas: J. Mater. Process. Technol., 2019, vol. 278, p. 116469. https://doi.org/10.1016/j.jmatprotec.2019.116469.

    Article  CAS  Google Scholar 

  13. S. Shahane, N. Aluru, P. Ferreira, S. Kapoor, and S. Vanka: J. Manuf. Process., 2020, vol. 51, pp. 130–41. https://doi.org/10.1016/j.jmapro.2020.01.016.

    Article  Google Scholar 

  14. M. Long, D. Chen, Q. Wang, D. Luo, Z. Han, Q. Liu, and W. Gao: Ironmak. Steelmak., 2012, vol. 39, pp. 370–77. https://doi.org/10.1179/1743281211Y.0000000088.

    Article  CAS  Google Scholar 

  15. H. Nakada, M. Susa, Y. Seko, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 446–53. https://doi.org/10.2355/isi**ternational.48.446.

    Article  CAS  Google Scholar 

  16. R. Saraswat, D.M. Maijer, P.D. Lee, and K.C. Mills: ISIJ Int., 2007, vol. 47, pp. 95–104. https://doi.org/10.2355/isi**ternational.47.95.

    Article  CAS  Google Scholar 

  17. W. Song, J. Zhang, Y. Liu, S. Wang, and B. Wang: Ironmak. Steelmak., 2015, vol. 42, pp. 656–63. https://doi.org/10.1179/1743281215Y.0000000011.

    Article  CAS  Google Scholar 

  18. S. Mosayebidorcheh and M. Gorji-Bandpy: Appl. Therm. Eng., 2017, vol. 118, pp. 724–33. https://doi.org/10.1016/j.applthermaleng.2017.03.031.

    Article  Google Scholar 

  19. R. Hardin, K. Liu, A. Kapoor, and C. Beckermann: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 297–306. https://doi.org/10.1007/s11663-003-0075-0.

    Article  CAS  Google Scholar 

  20. T. Wang, S. Cai, J. Xu, Y. Du, J. Zhu, J. Xu, and T. Li: Ironmak. Steelmak., 2010, vol. 37, pp. 341–46. https://doi.org/10.1179/030192310X12683045806026.

    Article  CAS  Google Scholar 

  21. B. Thomas and L. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181–93. https://doi.org/10.2355/isi**ternational.41.1181.

    Article  CAS  Google Scholar 

  22. A. Pourfathi and R. Tavakoli: Int. J. Therm. Sci., 2023, vol. 183, p. 107860. https://doi.org/10.1016/j.ijthermalsci.2022.107860.

    Article  Google Scholar 

  23. M. Zhu and C. Hong: ISIJ Int., 2002, vol. 42, pp. 520–26. https://doi.org/10.2355/isi**ternational.42.520.

    Article  CAS  Google Scholar 

  24. H. Rafii-Tabar and A. Chirazi: Phys. Rep. Rev. Sect. Phys. Lett., 2002, vol. 365, pp. 145–249. https://doi.org/10.1016/S0370-1573(02)00028-5.

    Article  CAS  Google Scholar 

  25. Y. Tan and H. Wang: J. Mater. Sci., 2012, vol. 47, pp. 5308–16. https://doi.org/10.1007/s10853-012-6417-z.

    Article  CAS  Google Scholar 

  26. Z. Zhang, M. Wu, H. Zhang, S. Hahn, F. Wimmer, A. Ludwig, and A. Kharicha: J. Mater. Process. Technol., 2022, vol. 301, p. 117434. https://doi.org/10.1016/j.jmatprotec.2021.117434.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Key Research and Development Program of China (No. 2021YFB3702401), the National Science Foundation of China (52304360) and the Open Foundation of the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Bei**g, China (K22-07) and the Key Research and Development Program of **angjiang Laboratory (22XJ01002) are greatly acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Dou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Pan, W., Wang, W. et al. Full-Process Numerical Simulation of Flow, Heat Transfer and Solidification for Hot Stam** Steel Manufactured via Thin Slab Continuous Casting Process. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03177-0

Navigation