Log in

Phase Equilibria of Ti-Bearing Electric Furnace Slags in Air at 1400 °C in CaO–MgO–SiO2–13 wt pct Al2O3–50 wt pct TiO2 System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Phase equilibria for the CaO–MgO–SiO2–13 wt pct Al2O3–50 wt pct TiO2 system were experimentally investigated at 1400 °C in air atmosphere, employing the high-temperature equilibration and quenching method. Seven distinct phases were identified, encompassing a liquid phase, a liquid phase with perovskite (CaTiO3), a liquid phase with rutile (TiO2), a liquid phase with anosovite (M3O5), a liquid phase with anosovite and rutile, a liquid phase with anosovite and spinel, and a liquid phase with perovskite and spinel. Additionally, an experimentally verified isotherm at 1400 °C was obtained and conducted a comparative analysis with predictions generated using FactSage software. Overall, the FactSage 8.1 software exhibited a notable tendency to overestimated the liquidus temperatures in the M3O5 and spinel phases regions when compared to the experimentally determined values. This disparity may be attributed to limitations in the FactSage 8.1 software database which lack of Al2TiO5 in the “FToxid-PSEU” solution species, as it indicated a large liquid phase region in the CaO–MgO–SiO2–13 wt pct Al2O3–50 wt pct TiO2 system at 1400 °C than what we experimentally determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that has been used is confidential.

References

  1. S. Wang, Y. Guo, T. Jang, F. Chen, F. Zheng, M. Tang, L. Yang, and G. Qiu: Trans. Nonferrous Met. Soc., 2018, vol. 28, pp. 2528–37. https://doi.org/10.1016/S1003-6326(18)64899-X.

    Article  CAS  Google Scholar 

  2. Y. Guo, K. Liu, F. Chen, S. Wang, L. Yang, D. Li, and Y. Zheng: J. Mater. Res. Technol., 2023, vol. 23, pp. 2479–90. https://doi.org/10.1016/j.jmrt.2023.01.125.

    Article  CAS  Google Scholar 

  3. Y. Han, S. Kim, B. Go, S. Lee, S. Park, and H.-S. Jeon: Powder Technol., 2021, vol. 391, pp. 282–91. https://doi.org/10.1016/j.powtec.2021.06.024.

    Article  CAS  Google Scholar 

  4. S. Wang, G. Li, Y. Guo, F. Chen, J. **g, J. Zhang, L. Yang, and G. Qiu: J. Mater. Res. Technol., 2022, vol. 20, pp. 2262–70. https://doi.org/10.1016/j.jmrt.2022.08.006.

    Article  CAS  Google Scholar 

  5. B. Liu, Q. Chu, Y. Huang, G. Han, H. Sun, and L. Zhang: Ceram. Int., 2023, vol. 49, pp. 10914–27. https://doi.org/10.1016/j.ceramint.2022.11.285.

    Article  CAS  Google Scholar 

  6. X. Liu, Q. Lv, S. Chen, Z. Zang, S. Zhang, and Y. Sun: J. Iron. Steel Res. Int., 2015, vol. 22, pp. 1009–14. https://doi.org/10.1016/S1006-706X(15)30104-7.

    Article  Google Scholar 

  7. J. **ang, X. Wang, M. Yang, J. Wang, C. Shan, G. Fan, G. Qiu, and X. Lv: J. Mater. Res. Technol., 2021, vol. 11, pp. 1184–92. https://doi.org/10.1016/j.jmrt.2021.01.111.

    Article  CAS  Google Scholar 

  8. D. Killick and D. Miller: J. Archaeol. Sci., 2014, vol. 43, pp. 239–55. https://doi.org/10.1016/j.jas.2013.12.016.

    Article  CAS  Google Scholar 

  9. R. Zeng, W. Li, N. Wang, G. Fu, M. Chu, and M. Zhu: Powder Technol., 2020, vol. 376, pp. 342–50. https://doi.org/10.1016/j.powtec.2020.08.043.

    Article  CAS  Google Scholar 

  10. Y. Shi, D. Zhu, J. Pan, Z. Guo, S. Lu, and Y. Xue: J. Mater. Res. Technol., 2022, vol. 19, pp. 243–62. https://doi.org/10.1016/j.jmrt.2022.04.146.

    Article  CAS  Google Scholar 

  11. A. Costa e Silva: J. Mater. Res. Technol., 2012, vol. 1, pp. 154–60. https://doi.org/10.1016/S2238-7854(12)70027-3.

    Article  CAS  Google Scholar 

  12. C. Feng, L. Gao, J. Tang, Z. Liu, and M. Chu: Trans. Nonferrous Met. Soc., 2020, vol. 30, pp. 800–811. https://doi.org/10.1016/S1003-6326(20)65255-4.

    Article  CAS  Google Scholar 

  13. D. Yang, H. Zhou, J. Wang, Z. Pang, G. Pei, Z. Yan, H. Mao, G. Qiu, and X. Lv: J. Mater. Res. Technol., 2021, vol. 12, pp. 1615–22. https://doi.org/10.1016/j.jmrt.2021.03.069.

    Article  CAS  Google Scholar 

  14. X. Huang, W. Zhao, H. Guo, B. Yan, P. Li, and C. Li: Ceram. Int., 2023, vol. 49, pp. 9708–18. https://doi.org/10.1016/j.ceramint.2022.11.143.

    Article  CAS  Google Scholar 

  15. C. Fredericci, E. Zanotto, and E. Ziemath: J. Non-Cryst. Solids, 2000, vol. 273, pp. 64–75. https://doi.org/10.1016/S0022-3093(00)00145-9.

    Article  CAS  Google Scholar 

  16. S. Wang, Y. Guo, F. Zheng, and F. Chen: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 945–52. https://doi.org/10.1007/s11663-020-01822-y.

    Article  CAS  Google Scholar 

  17. B. Zhao, J. Eugene, and H. Peter: J. Iron Steel Res. Int., 2009, vol. 16, pp. 1172–78. https://doi.org/10.1007/s11771-009-0143-y.

    Article  Google Scholar 

  18. B. Zhao, M. Chen, W. Zhang, Z. Zhao, and T. Evans: ISIJ Int., 2016, vol. 56, pp. 2156–60. https://doi.org/10.2355/isi**ternational.ISIJINT-2016-268.

    Article  CAS  Google Scholar 

  19. L.B. McRae, E. Pothas, P.R. Jochens, and D.D. Howat: J. S. Afr. Inst. Min. Metall, 1969, vol. 69, pp. 577–94.

    CAS  Google Scholar 

  20. L. Sun, J. Shi, Z. Yu, and M. Jiang: Ceram. Int., 2019, vol. 45, pp. 481–87. https://doi.org/10.1016/j.ceramint.2018.09.193.

    Article  CAS  Google Scholar 

  21. L. Sun, J. Shi, C. Liu, and M. Jiang: J. Alloys Compd., 2019, vol. 810, p. 151949 https://doi.org/10.1016/j.jallcom.2019.151949.

    Article  CAS  Google Scholar 

  22. J. Shi, L. Sun, J. Qiu, and M. Jiang: J. Alloys Compd., 2017, vol. 722, pp. 25–32. https://doi.org/10.1016/j.jallcom.2017.06.058.

    Article  CAS  Google Scholar 

  23. J. Shi, L. Sun, J. Qiu, and M. Jiang: ISIJ Int., 2018, vol. 58, pp. 431–38. https://doi.org/10.2355/isi**ternational.ISIJINT-2017-555.

    Article  CAS  Google Scholar 

  24. M. Chen, J. Shi, P. Taskinen, and A. Jokilaakso: Ceram. Int., 2020, vol. 46, pp. 27702–10. https://doi.org/10.1016/j.ceramint.2020.07.268.

    Article  CAS  Google Scholar 

  25. J. Shi, M. Chen, I. Santoso, L. Sun, M. Jiang, P. Taskinen, and A. Jokilaakso: Ceram. Int., 2020, vol. 46, pp. 1545–50. https://doi.org/10.1016/j.ceramint.2019.09.122.

    Article  CAS  Google Scholar 

  26. Z. Wang, H. Sun, L. Zhang, and Q. Zhu: J. Alloys Compd., 2016, vol. 671, pp. 137–43. https://doi.org/10.1016/j.jallcom.2016.02.044.

    Article  CAS  Google Scholar 

  27. Z. Wang, Q. Zhu, and H. Sun: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 357–66. https://doi.org/10.1007/s11663-018-1441-2.

    Article  CAS  Google Scholar 

  28. J. Liao and B. Zhao: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 2162–71. https://doi.org/10.1007/s12613-021-2376-1.

    Article  CAS  Google Scholar 

  29. C.W. Bale, P. Chartrand, and S.A. Degterov: Calphad, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  30. G.F. Bastin, J.M. Dijkstra, and H.J.M. Heijligers: X-ray Spectorom., 1998, vol. 27, pp. 3–10. https://doi.org/10.1002/(SICI)1097-4539(199801/02)27:1%3c3::AID-XRS227%3e3.0.CO;2-L.

    Article  CAS  Google Scholar 

  31. Y. Qiu, J. Shi, B. Yu, C. Hou, J. Dong, S. Li, Y. Zhai, J. Li, and C. Liu: J. Am. Ceram. Soc., 2022, vol. 105, pp. 6953–64. https://doi.org/10.1111/jace.18642.

    Article  CAS  Google Scholar 

  32. J. **g, Y. Guo, F. Chen, S. Wang, and L. Yang: Hydrometallurgy, 2023, vol. 217, p. 106023. https://doi.org/10.1016/j.hydromet.2023.106023.

    Article  CAS  Google Scholar 

  33. J. **g, Y. Guo, S. Wang, F. Chen, L. Yang, and G. Qiu: Crystal, 2022, vol. 12, pp. 1–20. https://doi.org/10.3390/cryst12070958.

    Article  CAS  Google Scholar 

  34. S.M. Kramer, I.G. Gorichev, Y.A. Lainer, I.V. Artamonova, and M.V. Terekhova: Russ. Metall., 2014, vol. 2014, pp. 704–707. https://doi.org/10.1134/s0036029514090109.

    Article  Google Scholar 

  35. J. **g, S. Wang, Y. Guo, G. Li, F. Chen, and L. Yang: JOM, 2023, https://doi.org/10.1007/s11837-023-06078-w.

    Article  PubMed  PubMed Central  Google Scholar 

  36. J. **g, S. Wang, Y. Guo, F. Chen, L. Yang, and G. Qiu: Calphad, 2023, vol. 83, p. 102619. https://doi.org/10.1016/j.calphad.2023.102619.

    Article  CAS  Google Scholar 

  37. S. Wang, M. Chen, Y. Guo, T. Jiang, and B. Zhao: Calphad, 2018, vol. 63, pp. 77–81. https://doi.org/10.1016/j.calphad.2018.09.001.

    Article  CAS  Google Scholar 

  38. S. Wang, M. Chen, B. Zhao, Y. Guo, J. **gn, F. Chen, and Y. Ling: Calphad, 2023, vol. 83, pp. 1–8. https://doi.org/10.1016/j.calphad.2023.102639.

    Article  CAS  Google Scholar 

  39. S.K. Panda and I.-H. Jung: ISIJ Int., 2020, vol. 60, pp. 31–41. https://doi.org/10.2355/isi**ternational.ISIJINT-2019-006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from National Natural Science Foundation of China on the project 52104345.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Jianfa **g: Investigation, writing—original draft. Yufeng Guo: Supervision. Shuai Wang: Conceptualization, review and editing. Feng Chen: Review and editing. Lingzhi Yang: Review and editing.

Corresponding author

Correspondence to Shuai Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**g, JF., Wang, S., Guo, YF. et al. Phase Equilibria of Ti-Bearing Electric Furnace Slags in Air at 1400 °C in CaO–MgO–SiO2–13 wt pct Al2O3–50 wt pct TiO2 System. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03161-8

Navigation