Log in

Phase Evolution Mechanism of Vanadium Slag During Sodium Roasting via the Atomic Atmosphere Method Exploration

  • Topical Collection: 2023 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The sodium roasting-water leaching technique is the major technique for vanadium extraction from vanadium slag in industry, which suffers from the low vanadium extraction efficiency and thus low sustainability. The lack of intrinsic evolution mechanism of vanadium-containing phases during sodium roasting hinders the improvement of vanadium extraction efficiency. Herein, the “atomic atmosphere” method is proposed to explore the phase evolution mechanism of vanadium slag during sodium roasting at the atomic scale. At the initial stage of roasting, FeV2O4 transformed into Fe2O3·V2O3. As roasting time increased to 5 min, V3+ in Fe2O3·V2O3 began to be oxidized to V4+. At 15 min, V5+-containing sodium vanadate of Na3VO4, NaV3O8, and NaVO3 began to appear. At 15 to 70 min, oxidization of vanadium occurred intensively, and the sodium vanadate nanowire crystals increased and grew into clusters. At 90 min, all the vanadium atoms were V5+, which are surrounded by O2- and Na+; the sodium vanadate nanowire bundles covered the whole slag surface. This work exemplifies the atomic atmosphere method to disclose the phase evolution mechanism of vanadium slag during sodium roasting at the atomic scale, which can not only promote the vanadium extraction efficiency of sodium roasting technique, but also provides insights for efficient and sustainable extraction of other valuable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.-Y. Li, C.-J. Wang, Y.-H. Yuan, Y. Guo, J. Diao, and B. **e: J. Clean. Prod., 2020, vol. 260, p. 121091.

    Article  CAS  Google Scholar 

  2. B. Satola: J. Electrochem. Soc., 2021, vol. 168, p. 060503.

    Article  Google Scholar 

  3. J.C. Lee, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon: J. Mater. Res. Technol., 2021, vol. 12, pp. 343–64.

    Article  CAS  Google Scholar 

  4. E. Del Carpio, L. Hernandez, C. Ciangherotti, V. Villalobos Coa, L. Jimenez, V. Lubes, and G. Lubes: Coord. Chem. Rev., 2018, vol. 372, pp. 117–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. M. Li, H. Du, S. Zheng, S. Wang, Y. Zhang, B. Liu, D.B. Dreisinger, and Y. Zhang: JOM, 2017, vol. 69, pp. 1970–75.

    Article  CAS  Google Scholar 

  6. F. Gao, A.U. Olayiwola, B. Liu, S. Wang, H. Du, J. Li, X. Wang, D. Chen, and Y. Zhang: Miner. Process. Extr. Metall. Rev., 2022, vol. 43, pp. 466–88.

    Article  Google Scholar 

  7. J. Wen, T. Jiang, J. Wang, L. Lu, and H. Sun: J. Clean. Prod., 2020, vol. 261, p. 121205.

    Article  CAS  Google Scholar 

  8. L. Chen, Z. Wang, Z. Qin, G. Zhang, H. Yue, B. Liang, and D. Luo: J. Mater. Res. Technol., 2021, vol. 12, pp. 1391–1402.

    Article  CAS  Google Scholar 

  9. H.-Y. Li, J. Cheng, C.-J. Wang, S. Shen, J. Diao, and B. **e: Metall. Trans. B, 2022, vol. 53, pp. 604–16.

    Article  CAS  Google Scholar 

  10. W.-C. Song, K. Li, Q. Zheng, and H. Li: Waste Biomass Valori., 2013, vol. 5, pp. 327–32.

    Article  Google Scholar 

  11. H.-Y. Li, C. Wang, M. Lin, Y. Guo, and B. **e: Powder Technol., 2020, vol. 360, pp. 503–08.

    Article  CAS  Google Scholar 

  12. H.-Y. Li, H.-X. Fang, K. Wang, W. Zhou, Z. Yang, X.-M. Yan, W.-S. Ge, Q.-W. Li, and B. **e: Hydrometallurgy, 2015, vol. 156, pp. 124–35.

    Article  CAS  Google Scholar 

  13. X.-S. Li, B. **e, G.-E. Wang, and X.-J. Li: T. Nonferr. Metal. Soc., 2011, vol. 21, pp. 1860–67.

    Article  CAS  Google Scholar 

  14. Y. Ji, S. Shen, J. Liu, and Y. Xue: J. Clean. Prod., 2017, vol. 149, pp. 1068–78.

    Article  CAS  Google Scholar 

  15. C.P.J. Van Vuuren and P.P. Stander: Miner. Eng., 2001, vol. 14, pp. 803–08.

    Article  Google Scholar 

  16. H.-Y. Li, K. Wang, C. Wang, M. Lin, and B. **e: Acta Crystallogr. Sect. B, 2019, vol. 75, pp. 927–32.

    Article  CAS  Google Scholar 

  17. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R. De Gryse: J. Electron Spectrosc. Relat. Phenom., 2004, vol. 135, pp. 167–75.

    Article  CAS  Google Scholar 

  18. J. Mendialdua, R. Casanova, and Y. Barbaux: J. Electron Spectrosc. Relat. Phenom., 1995, vol. 71, pp. 249–61.

    Article  CAS  Google Scholar 

  19. M. Demeter, M. Neumann, and W. Reichel: Surf. Sci., 2000, vol. 454, pp. 41–44.

    Article  Google Scholar 

  20. Z. Wang, L. Chen, T. Aldahrib, C. Li, W. Liu, G. Zhang, Y. Yang, and D. Luo: Hydrometallurgy, 2020, vol. 191, p. 105156.

    Article  CAS  Google Scholar 

  21. S. Petnikota, R. Chua, K.M. Boopathi, R. Satish, F. Bonaccorso, V. Pellegrini, and M. Srinivasan: J. Electrochem. Soc., 2020, vol. 167, p. 100514.

    Article  CAS  Google Scholar 

  22. W. Kou, J. Wu, Q. Zhang, Y. Shen, R. Bi, Y. Li, X. Miao, T. Yang, and G. Yang: J. Alloys Compd., 2022, vol. 924, p. 166414.

    Article  CAS  Google Scholar 

  23. C. Ji, Z. Wu, L. Lu, X. Wu, J. Wang, X. Liu, H. Zhou, Z. Huang, J. Gou, and Y. Jiang: J. Mater. Chem. C, 2018, vol. 6, pp. 6502–09.

    Article  CAS  Google Scholar 

  24. L. Chen, Z. Wang, Z. Qin, G. Zhang, H. Yue, B. Liang, and D. Luo: Powder Technol., 2021, vol. 387, pp. 434–43.

    Article  CAS  Google Scholar 

  25. H. Yang, Y. Liu, T. Zhang, S. Lin, and K. Wang: Metall. Mater. Trans. B, 2024, vol. 1, p. 1.

    Google Scholar 

  26. G.A. Sawatzky and D. Post: PRB, 1979, vol. 20, pp. 1546–55.

    Article  CAS  Google Scholar 

  27. N. Alov, D. Kutsko, I. Spirovova, and Z. Bastl: Surf. Sci., 2006, vol. 600, pp. 1628–31.

    Article  CAS  Google Scholar 

  28. T. Jiang, J. Wen, M. Zhou, and X. Xue: J. Alloys Compd., 2018, vol. 742, pp. 402–12.

    Article  CAS  Google Scholar 

  29. Q. Zhang, Y. Wu, and T. Zuo: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 471–79.

    Article  Google Scholar 

  30. J. Pantic, A. Kremenovic, A. Dosen, M. Prekajski, N. Stankovic, Z. Bascarevic, and B. Matovic: Ceram. Int., 2013, vol. 39, pp. 483–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Nos. 52074050, 52222407] and the Large Instrument Foundation of Chongqing University [No. 202303150188].

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Li, HY., Zhong, Q. et al. Phase Evolution Mechanism of Vanadium Slag During Sodium Roasting via the Atomic Atmosphere Method Exploration. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03137-8

Navigation