Log in

Thermodynamics of Palladium Dissolution Behavior in FetO–SiO2–CaO–Al2O3–MgO Slag at 1873 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To establish the dissolution mechanism of palladium (Pd) in the FetO–SiO2–CaO–Al2O3–MgOsat slag system, the Pd solubility was measured at 1873 K (1600 °C) and oxygen partial pressure ranging from \({{p}_{\text{O}_{2}}} = 1.0\times {10}^{-8}\,{\text{atm}}\) to \({{p}_{\text{O}_{2}}} = 1.0\times {10}^{-6}\,{\text{atm}}\). In the current slag system, the Pd solubility increases with increasing content of CaO and FeO, and decreases with increasing content of SiO2 and Al2O3. This solubility behavior is quantified by employing the modified Vee ratio, defined as (CaO+FeO)/(SiO2+Al2O3), the theoretical optical basicity and the activity of CaO in the slag. Thermodynamic analysis reveals that Pd stabilizes in the form of the (\({{\text{PdO}}}_{2}^{3-}\)) palladate complex ion in the present aluminosilicate melts. Based on this, the Pd dissolution reaction in the current slag system is proposed as follows:

\({\text{Pd}}(l)+\frac{1}{4}{{\text{O}}}_{2}(g)+\frac{3}{2}\left({{\text{O}}}^{2-}\right)=({{\text{PdO}}}_{2}^{3-})\)

Combining the results from the present experiment and previous findings suggests that a well-designed slag system can effectively minimize Pd loss during the pyrometallurgical processing of industrial wastes containing Pd. By adjusting the modified Vee ratio, in which CaO and FeO promote Pd solubility in the slag, whereas SiO2 increases slag viscosity, it is possible to achieve optimal conditions. Therefore, we recommend implementing such an optimized slag system for pyrometallurgical treatment of Pd-containing industrial wastes, ensuring minimal Pd loss and maximizing resource recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Widmer, H. Oswald-Krapf, D. Sinha-Khetriwal, M. Schnellmann, and H. Böni: Environ. Impact Assess. Rev., 2005, vol. 25, pp. 436–58. https://doi.org/10.1016/j.eiar.2005.04.001.

    Article  Google Scholar 

  2. V. Forti, C.P. Balde, R. Kuehr, and G. Bel: The Global E-waste Monitor 2020, United Nations University (UNU), 2020.

  3. M. Kaya: Energy Technology 2017, The Minerals, Metals & Materials Society, 2017, pp. 433–51. https://doi.org/10.1007/978-3-319-52192-3_43

  4. K. Liu, Q. Tan, J. Yu, and M. Wang: Circ. Econ., 2023, vol. 2, art no. 100028. https://doi.org/10.1016/j.cec.2023.100028.

    Article  Google Scholar 

  5. Y. Zhou and K. Qiu: J. Hazard. Mater., 2010, vol. 175, pp. 823–28. https://doi.org/10.1016/j.jhazmat.2009.10.083.

    Article  CAS  PubMed  Google Scholar 

  6. J.H. Heo, J. Park, and J.H. Park: Resour. Conserv. Recycl., 2022, vol. 179, art no. 106068. https://doi.org/10.1016/j.resconrec.2021.106068.

    Article  CAS  Google Scholar 

  7. S.J. Song, V.N.H. Nguyen, and M.S. Lee: Kor. J. Met. Mater., 2022, vol. 60, pp. 188–97. https://doi.org/10.3365/KJMM.2022.60.3.188.

    Article  CAS  Google Scholar 

  8. S.J. Song, V.N.H. Nguyen, and M.S. Lee: Kor. J. Met. Mater., 2022, vol. 60, pp. 837–44. https://doi.org/10.3365/KJMM.2022.60.11.837.

    Article  CAS  Google Scholar 

  9. S. Nakamura and N. Sano: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 103–08. https://doi.org/10.1007/s11663-997-0132-1.

    Article  CAS  Google Scholar 

  10. H. Shuto, T.H. Okabe, and K. Morita: Mater. Trans., 2011, vol. 52, pp. 1899–904. https://doi.org/10.2320/matertrans.M-M2011821.

    Article  CAS  Google Scholar 

  11. C. Wiraseranee, T.H. Okabe, and K. Morita: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 584–92. https://doi.org/10.1007/s11663-013-9816-x.

    Article  CAS  Google Scholar 

  12. K. Morita, C. Wiraseranee, H. Shuto, S. Nakamura, K. Iwasawa, T.H. Okabe, and N. Sano: Miner. Process. Extr. Metall. (Trans. Inst. Min. Metall. C), 2014, vol. 123, pp. 29–34. https://doi.org/10.1179/0371955313Z.00000000070.

    Article  CAS  Google Scholar 

  13. A. Borisov, H. Palme, and B. Spettel: Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 705–16. https://doi.org/10.1016/0016-7037(94)90500-2.

    Article  CAS  Google Scholar 

  14. N.A. Sullivan, Z. Zajacz, and J.M. Brenan: Geochim. Cosmochim. Acta, 2018, vol. 231, pp. 15–29. https://doi.org/10.1016/j.gca.2018.03.019.

    Article  CAS  Google Scholar 

  15. V. Laurenz, R.O.C. Fonseca, C. Ballhaus, and P.J. Sylvester: Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 2989–98. https://doi.org/10.1016/j.gca.2010.02.015.

    Article  CAS  Google Scholar 

  16. K. Avarmaa, L. Klemettinen, H. O’Brien, A. Jokilaakso, D. Lindberg, and P. Taskinen: JOM, 2021, vol. 73, pp. 1871–77. https://doi.org/10.1007/s11837-021-04672-4.

    Article  CAS  Google Scholar 

  17. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980, pp. 1–24.

    Google Scholar 

  18. K.Y. Ko and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1224–30. https://doi.org/10.1007/s11663-011-9566-6.

    Article  CAS  Google Scholar 

  19. K.Y. Ko and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 440–42. https://doi.org/10.1007/s11663-012-9649-z.

    Article  CAS  Google Scholar 

  20. Y.S. Han and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 235–42. https://doi.org/10.1007/s11663-014-0209-6.

    Article  CAS  Google Scholar 

  21. Y.S. Han, D.R. Swinbourne, and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2449–57. https://doi.org/10.1007/s11663-015-0421-z.

    Article  CAS  Google Scholar 

  22. J.G. Yang, J.H. Park, J.Y. Kang, H.S. Park, and J.H. Park: JOM, 2021, vol. 73, pp. 688–93. https://doi.org/10.1007/s11837-020-04527-4.

    Article  CAS  Google Scholar 

  23. J.H. Park and G.H. Park: ISIJ Int., 2012, vol. 52, pp. 764–69. https://doi.org/10.2355/isi**ternational.52.764.

    Article  CAS  Google Scholar 

  24. Y.B. Kang and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1211–17. https://doi.org/10.1007/s11663-011-9541-2.

    Article  CAS  Google Scholar 

  25. J.H. Park, G.H. Park, and Y.E. Lee: ISIJ Int., 2010, vol. 50, pp. 1078–83. https://doi.org/10.2355/isi**ternational.50.1078.

    Article  CAS  Google Scholar 

  26. M.K. Cho, J. Cheng, J.H. Park, and D.J. Min: ISIJ Int., 2010, vol. 50, pp. 215–21. https://doi.org/10.2355/isi**ternational.50.215.

    Article  CAS  Google Scholar 

  27. J.H. Heo, S.S. Park, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1098–105. https://doi.org/10.1007/s11663-012-9701-z.

    Article  CAS  Google Scholar 

  28. J.A. Duffy and M.D. Ingram: J. Non-Cryst. Solids, 1976, vol. 21, pp. 373–410. https://doi.org/10.1016/0022-3093(76)90027-2.

    Article  CAS  Google Scholar 

  29. J.A. Duffy and M.D. Ingram: J. Am. Chem. Soc., 1971, vol. 93, pp. 6448–54. https://doi.org/10.1021/ja00753a019.

    Article  CAS  Google Scholar 

  30. J.A. Duffy, M.D. Ingram, and I.D. Sommerville: J. Chem. Soc. Faraday Trans., 1978, vol. 74, pp. 1410–19. https://doi.org/10.1039/F19787401410.

    Article  CAS  Google Scholar 

  31. J.H. Park and D.J. Min: J. Non-Cryst. Solids, 2004, vol. 337, pp. 150–56. https://doi.org/10.1016/j.jnoncrysol.2004.03.109.

    Article  CAS  Google Scholar 

  32. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 150–53. https://doi.org/10.1007/s11663-007-9122-6.

    Article  CAS  Google Scholar 

  33. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269–75. https://doi.org/10.1007/s11663-004-0028-2.

    Article  CAS  Google Scholar 

  34. J.S. Choi, T.J. Park, and D.J. Min: J. Am. Ceram. Soc., 2021, vol. 104, pp. 140–56. https://doi.org/10.1111/jace.17432.

    Article  CAS  Google Scholar 

  35. L. Zhang and S. Jahanshahi: Scand. J. Metall., 2001, vol. 30, pp. 364–69. https://doi.org/10.1034/j.1600-0692.2001.300603.x.

    Article  CAS  Google Scholar 

  36. S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima: ISIJ Int., 2006, vol. 46, pp. 352–58. https://doi.org/10.2355/isi**ternational.46.352.

    Article  CAS  Google Scholar 

  37. T.S. Kim and J.H. Park: J. Alloys Compd., 2022, vol. 916, art no. 165328. https://doi.org/10.1016/j.jallcom.2022.165328.

    Article  CAS  Google Scholar 

  38. D.S. Goldman: J. Am. Ceram. Soc., 1983, vol. 66, pp. 205–09. https://doi.org/10.1111/j.1151-2916.1983.tb10018.x.

    Article  CAS  Google Scholar 

  39. T. Førland and K. Grjotheim: Metall. Trans. B, 1978, vol. 9B, pp. 45–49. https://doi.org/10.1007/BF02822670.

    Article  Google Scholar 

  40. www.factsage.com (February 2024).

  41. C.J.B. Fincham and F.D. Richardson: Proc. R. Soc. Lond., 1954, vol. 223A, pp. 40–62.

    Google Scholar 

  42. H.S. Park, Y.S. Han, and J.H. Park: ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 14119–25. https://doi.org/10.1021/acssuschemeng.9b02725.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Competency Development Program for Industry Specialists from the Korea Institute for Advancement of Technology (KIAT, Grant No. P0023676) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP, Grant No. 20217510100080), funded by the Ministry of Trade, Industry and Energy (MOTIE), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, R.R., Kim, H.J., Park, H.S. et al. Thermodynamics of Palladium Dissolution Behavior in FetO–SiO2–CaO–Al2O3–MgO Slag at 1873 K. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03127-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03127-w

Navigation