Log in

Numerical Study on Metallurgical Effect of Filtering Weir with Multi-stepped Orifices in Tundish

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Herein, a novel filtering weir with multi-stepped orifices is proposed to solve the problem of ineffective removal of small inclusions with traditional flow control devices in tundishes. Without changing the installation position, three types of novel filtering weir were designed. The flow and heat transfer behavior, wall shear distribution of the weir and dam, and removal rate of inclusions with different sizes were compared and analyzed. A 1:0.4 scale water model was conducted to validate the flow field calculated by mathematical simulation. The results indicate that the filtering weir can extend the response time and promote the mixing of liquid steel, but has little impact on the residence time and dead volume fraction. Due to the influence of the flow, the near-wall velocity and wall shear stress of the weir and dam decrease, but the area of the low-temperature zone of liquid surface in tundishes increases. The multi-stepped orifices added on the weir increase the removal rate of inclusions below 50 μm, especially the removal rate of inclusion of 2 and 5 μm increases to 63 to 64 pct, which is 18 to 21 pct higher than that with a traditional weir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F. **ng, S.G. Zheng, and M.Y. Zhu: Steel Res. Int., 2018, vol. 89, p. 1700542. https://doi.org/10.1002/srin.201700542.

    Article  CAS  Google Scholar 

  2. K.M. Wang, Z.P. Tie, S. Cai, H.J. Wang, H.Y. Tang, and J.Q. Zhang: ISIJ Int., 2023, vol. 63, pp. 1351–59. https://doi.org/10.2355/isi**ternational.ISIJINT-2023-008.

    Article  CAS  Google Scholar 

  3. D.Y. Sheng: ISIJ Int., 2023, vol. 63, pp. 91–101. https://doi.org/10.2355/isi**ternational.ISIJINT-2022-286.

    Article  CAS  Google Scholar 

  4. Q. Quan, Z.X. Zhang, T.P. Qu, X.L. Li, L. Tian, and D.Y. Wang: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 1182–98. https://doi.org/10.1007/s42243-022-00884-3.

    Article  Google Scholar 

  5. A. Cwudzinski: Steel Res. Int., 2014, vol. 85, pp. 902–17. https://doi.org/10.1002/srin.201300284.

    Article  CAS  Google Scholar 

  6. H.L. Yang, P. He, and Y.C. Zhai: ISIJ Int., 2014, vol. 54, pp. 578–81. https://doi.org/10.2355/isi**ternational.54.578.

    Article  CAS  Google Scholar 

  7. L.F. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361–79. https://doi.org/10.1007/s11663-006-0021-z.

    Article  CAS  Google Scholar 

  8. S. Chang, L.C. Zhong, and Z.S. Zou: ISIJ Int., 2015, vol. 55, pp. 837–44. https://doi.org/10.2355/isi**ternational.55.837.

    Article  CAS  Google Scholar 

  9. X.F. Qin, C.G. Cheng, Y. Li, W.L. Wu, and Y. **: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1224–35. https://doi.org/10.1007/s11663-021-02404-2.

    Article  CAS  Google Scholar 

  10. X.F. Qin, C.G. Cheng, Y. Li, W.L. Wu, and Y. **: Steel Res. Int., 2023, vol. 94, p. 2200915. https://doi.org/10.1002/srin.202200915.

    Article  CAS  Google Scholar 

  11. W.X. Huang, S. Chang, Z.S. Zou, H. Song, Y.X. Qu, L. Shao, and B.K. Li: ISIJ Int., 2022, vol. 62, pp. 1439–49. https://doi.org/10.2355/isi**ternational.ISIJINT-2021-600.

    Article  CAS  Google Scholar 

  12. Q.F. Hou, Q. Yue, H.Y. Wang, Z.S. Zou, and A.B. Yu: ISIJ Int., 2008, vol. 48, pp. 787–92. https://doi.org/10.2355/isi**ternational.48.787.

    Article  CAS  Google Scholar 

  13. K.I. Uemura, M. Takahashl, S. Koyama, and M. Nitta: ISIJ Int., 1992, vol. 32, pp. 150–56. https://doi.org/10.2355/isi**ternational.32.150.

    Article  CAS  Google Scholar 

  14. S. Chakraborty, R.J. O’Malley, L. Bartlett, and M.Z. Xu: Int. J. Metalcast., 2020, vol. 15, pp. 1006–20. https://doi.org/10.1007/s40962-020-00537-9.

    Article  CAS  Google Scholar 

  15. T. Wetzig, M. Neumann, M. Schwarz, L. Schottler, M. Abendroth, and C.G. Aneziris: Adv. Eng. Mater., 2022, vol. 24, p. 2100777. https://doi.org/10.1002/adem.202100777.

    Article  CAS  Google Scholar 

  16. L. Bulkowski, U. Galisz, H. Kania, Z. Kudlinski, J. Pieprzyca, and J. Baranski: Arch. Metall. Mater., 2012, vol. 57, pp. 363–69. https://doi.org/10.2478/v10172-012-0035-2.

    Article  Google Scholar 

  17. S. Chakraborty: Removal of Non-metallic Inclusions from Molten Steel by Ceramic Foam Filtration. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2020.

  18. K. Raiber, P. Hammerschmid, and D. Janke: ISIJ Int., 1995, vol. 35, pp. 380–88. https://doi.org/10.2355/isi**ternational.35.380.

    Article  CAS  Google Scholar 

  19. Y. Keizo: Trans. ISIJ, 1987, vol. 27, pp. 873–77. https://doi.org/10.2355/isi**ternational1966.27.873.

    Article  Google Scholar 

  20. T. Wetzig, B. Luchini, S. Dudczig, J. Hubalkova, and C.G. Aneziris: Ceram. Int., 2018, vol. 44, pp. 18143–55. https://doi.org/10.1016/j.ceramint.2018.07.022.

    Article  CAS  Google Scholar 

  21. T. Wetzig, A. Baaske, S. Karrasch, N. Brachhold, M. Rudolph, and C.G. Aneziris: Ceram. Int., 2018, vol. 44, pp. 23024–34. https://doi.org/10.1016/j.ceramint.2018.09.105.

    Article  CAS  Google Scholar 

  22. S. Neumann, A. Asad, and R. Schwarze: Adv. Eng. Mater., 2019, vol. 22, p. 1900658. https://doi.org/10.1002/adem.201900658.

    Article  CAS  Google Scholar 

  23. O.B. Isaev: Metallurgist, 2009, vol. 53, pp. 672–78. https://doi.org/10.1007/s11015-010-9231-3.

    Article  CAS  Google Scholar 

  24. B.L. Zhang, F.H. Liu, R. Zhu, and J.F. Zhu: Materials, 2020, vol. 13, p. 5129. https://doi.org/10.3390/ma13225129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. **, X.S. Dong, F. Yang, C.G. Cheng, Y. Li, and W. Wang: Metals, 2018, vol. 8, p. 611. https://doi.org/10.3390/met8080611.

    Article  CAS  Google Scholar 

  26. C.M. Lee, I.S. Choi, B.G. Bak, and J.M. Lee: Rev. Met. Paris, 1993, vol. 90, pp. 501–06. https://doi.org/10.1051/metal/199390040501.

    Article  CAS  Google Scholar 

  27. X.Y. Wang, D.T. Zhao, S.T. Qiu, and Z.S. Zou: ISIJ Int., 2017, vol. 57, pp. 1990–99. https://doi.org/10.2355/isi**ternational.57.2270.

    Article  CAS  Google Scholar 

  28. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li: Powder Technol., 2020, vol. 367, pp. 358–75. https://doi.org/10.1016/j.powtec.2020.03.060.

    Article  CAS  Google Scholar 

  29. C. Liu, A.D. **ao, Z. He, W. Yan, G.Q. Li, and Q. Wang: Steel Res. Int., 2022, vol. 93, p. 2100818. https://doi.org/10.1002/srin.202100818.

    Article  CAS  Google Scholar 

  30. C. Yao, M. Wang, M.X. Pan, and Y.P. Bao: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 1114–24. https://doi.org/10.1007/s42243-020-00533-7.

    Article  Google Scholar 

  31. J.S. Zhang, B.M. Qin, Y.H. Liu, Q.H. Li, X.T. Zuo, C. Wang, S.F. Yang, and Q. Liu: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 1171–81. https://doi.org/10.1007/s42243-023-00982-w.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Numbers 52204351, 51874215), China Postdoctoral Science Foundation (2022M722487), and Open Fund Project (Grant No. FMRUlab23-05) supported by Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changgui Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Cheng, C., Chen, H. et al. Numerical Study on Metallurgical Effect of Filtering Weir with Multi-stepped Orifices in Tundish. Metall Mater Trans B 55, 1910–1924 (2024). https://doi.org/10.1007/s11663-024-03075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03075-5

Navigation