Log in

Comparison Between Microwave Heating and Conventional Heating of Magnetite During Hydrogen Reduction

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The microstructure mechanism and kinetics of magnetite powder reduction in the H2 atmosphere were studied by both microwave heating and conventional heating methods. Cross-sectional morphologies of the reduction products obtained through these two heating methods were compared. In both cases, the reduction occurred layer by layer and with the formation of irregular pores in the iron layer. The difference between the two methods was the occurrence of cracks in the particles during conventional heating. The macroscopic kinetics of magnetite reduction was analyzed by measuring the water content with a hygrometer. In a reducing atmosphere comprising 60 pct H2-Ar at 1173–1373 K, the reduction of magnetite took place in two stages: from Fe3O4 to FeO and from FeO to Fe. Microwave radiation increased the atomic diffusion coefficient, thereby enhancing diffusion and reaction rate. The reduction rate at 1173 K under microwave was nearly equal to that of 1373 K under conventional conditions, despite a temperature difference of 200 K. Compared to conventional heating, microwave heating reduced the reaction activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. **, Z.Y. Jiang, and C. Bao: Steel Res. Int., 2015, vol. 37(4), pp. 499–508. https://doi.org/10.1002/srin.201500054.

    Article  CAS  Google Scholar 

  2. K. He, Z. Zheng, and Z. Chen: Int J Hydrogen Energ, 2021, vol. 46(5), pp. 4592–4605. https://doi.org/10.1016/j.ijhydene.2020.10.263.

    Article  CAS  Google Scholar 

  3. A. Pineau, N. Kanari, and I. Gaballah: Thermochim Acta, 2007, vol. 456(2), pp. 75–88. https://doi.org/10.1016/j.tca.2007.01.014.

    Article  CAS  Google Scholar 

  4. K.C. Sabat and R.K. Paramguru: Plasma Chem Plasma Process, 2014, vol. 34(1), pp. 1–23. https://doi.org/10.1007/s11090-013-9484-2.

    Article  CAS  Google Scholar 

  5. P. Rajput, K.C. Sabat, et al.: Ironmak & Steelmak, 2014, vol. 41(10), pp. 721–31. https://doi.org/10.1179/1743281214Y.0000000186.

    Article  CAS  Google Scholar 

  6. H.Y. Sohn and M. Olivas-Martinez: JOM, 2014, vol. 66(9), pp. 1557–64. https://doi.org/10.1007/s11837-014-1120-y.

    Article  CAS  Google Scholar 

  7. W. Liu, J.Y. Lim, M.A. Saudedu, A.N. Hayhurst, S.A. Scott, and J.S. Dennis: Chem. Eng. Sci., 2014, vol. 120, pp. 149–66. https://doi.org/10.1016/j.ces.2014.08.010.

    Article  CAS  Google Scholar 

  8. M. Elzohiery, H.Y. Sohn, and Y. Mohassab: Steel Res Int, 2017, vol. 88(2), p. 1600133. https://doi.org/10.1002/srin.201600133.

    Article  CAS  Google Scholar 

  9. A. Ferrari, J. Hunt, A. Lita, B. Ashley, and A.E. Stiegman: Indian J Chem A, 2014, vol. 118(18), pp. 9346–56. https://doi.org/10.1021/jp501206n.

    Article  CAS  Google Scholar 

  10. J. Hunt, A. Ferrari, A. Lita, M. Crosswhite, B. Ashley, and A.E. Stiegman: Indian J Chem A, 2013, vol. 117, pp. 26871–80. https://doi.org/10.1021/jp4076965.

    Article  CAS  Google Scholar 

  11. J. Zhou, W. Xu, Z. You, Z. Wang, Y. Luo, and L. Gao: Sci Rep, 2016, vol. 6, p. 25149. https://doi.org/10.1038/srep25149.

    Article  CAS  Google Scholar 

  12. H. Hinrikus, J. Lass, and D. Karai: Electromagn. Biol. Med., 2015, vol. 34(4), pp. 327–33. https://doi.org/10.3109/15368378.2014.921195.

    Article  CAS  Google Scholar 

  13. S.I. Ayvaz and I. Aydin: Trans Indian I Metals, 2020, vol. 73(10), pp. 2635–44. https://doi.org/10.1007/s12666-020-02072-x.

    Article  CAS  Google Scholar 

  14. M.A. Janney, H.D. Kimrey, and W.R. Allen: J. Mater. Sci., 1997, vol. 32(5), pp. 1347–55.

    Article  CAS  Google Scholar 

  15. P.K. Loharkar, A. Ingle, and S. Jhavar: J Mater Res Technol, 2019, vol. 8(3), pp. 3306–26. https://doi.org/10.1016/j.jmrt.2019.04.004.

    Article  CAS  Google Scholar 

  16. D.J. Skamser and D.L. Johnson: MRS Online Proc Library (OPL)., 1994, vol. 347, pp. 325–30. https://doi.org/10.1557/PROC-347-325.

    Article  CAS  Google Scholar 

  17. J.G.P. Binner and I.A.H. Al-Dawery: Supercond Sci Tech, 1998, vol. 11(11), pp. 1230–6. https://doi.org/10.1088/0953-2048/11/11/006.

    Article  CAS  Google Scholar 

  18. J. Chen, L. Liu, and J.Q. Zeng: Steel., 2004, vol. 39(6), pp. 1–5.

    Google Scholar 

  19. N. Standish and H. Worncr: J Microwave Power EE, 1990, vol. 25(3), pp. 177–9. https://doi.org/10.1080/08327823.1990.11688126.

    Article  Google Scholar 

  20. Y.X. Hua and C.P. Liu: Acta Metall Sinical (English Lett)., 1996, vol. 9(3), pp. 164–5.

    CAS  Google Scholar 

  21. N.A. Hassine: Int J Refrac Metals Hard Mater, 1995, vol. 6, pp. 353–8. https://doi.org/10.1016/0263-4368(95)00035-H.

    Article  Google Scholar 

  22. A.B. Yu, N. Standish, R.P. Zou: 6th AusMM Extractive Metallurgy Conference Metall. (1994), pp. 225-32.

  23. W.L.E. Wong, S. Karthik, and M. Gupta: J. Mater. Sci., 2005, vol. 40, pp. 3395–402. https://doi.org/10.1007/s10853-005-0419-z.

    Article  CAS  Google Scholar 

  24. K. Kashimura, M. Sato, M. Hotta, D. Kumar, K. Agrawal, and M. Nagata: Mater. Sci. Eng. A, 2012, vol. 556, pp. 977–9. https://doi.org/10.1016/j.msea.2012.07.049.

    Article  CAS  Google Scholar 

  25. S. Agrawal and N. Dhawan: J Sustain Metall, 2020, vol. 6, pp. 355–66. https://doi.org/10.1007/s40831-020-00279-2.

    Article  Google Scholar 

  26. P.C. Harrison: Fundamental study of the heating effect of 2.45 GHz microwave radiation on minerals, University of Birmingham, 1997.

    Google Scholar 

  27. S. Zhong and H.E. Geotzman: Mining Metall Explor, 1996, vol. 13, pp. 174–8. https://doi.org/10.1007/BF03402742.

    Article  CAS  Google Scholar 

  28. A. Amini, K. Ohno, T. Maeda, and K. Kunitomo: Chem. Eng. J., 2019, vol. 374, pp. 648–57. https://doi.org/10.1016/j.cej.2019.05.226.

    Article  CAS  Google Scholar 

  29. Y. Mohassab and H.Y. Sohn: Steel Res. Int., 2015, vol. 86(7), pp. 740–52. https://doi.org/10.1002/srin.201400186.

    Article  CAS  Google Scholar 

  30. C.J. Sun, L.Q. Ai, L.K. Hong, and Y.Q. Li: Ironmak Steelmak., 2019, vol. 47, pp. 1015–21. https://doi.org/10.1080/03019233.2019.1659657.

    Article  CAS  Google Scholar 

  31. J. Pang, P. Guo, and Z. Pei: J. Iron. Steel Res. Int., 2009, vol. 16(5), pp. 07–11. https://doi.org/10.1016/S1006-706X(10)60002-7.

    Article  CAS  Google Scholar 

  32. S.H. Kim, X. Zhang, and Y. Ma: Acta Mater., 2021, vol. 212, 116933https://doi.org/10.1016/j.actamat.2021.116933.

    Article  CAS  Google Scholar 

  33. B. Abolpoura, M.M. Afsahia, and M. Azizkarimi: Miner Process Extr M, 2018, vol. 127(1), pp. 29–39. https://doi.org/10.1080/03719553.2016.1277094.

    Article  CAS  Google Scholar 

  34. M. Stir, K. Ishizaki, S. Vaucher, and R. Nicula: J. Appl. Phys., 2009, vol. 105(12), p. 124901. https://doi.org/10.1063/1.3148264.

    Article  CAS  Google Scholar 

  35. B. Janković: Chem. Eng. J., 2008, vol. 139(1), pp. 128–35. https://doi.org/10.1016/j.cej.2007.07.085.

    Article  CAS  Google Scholar 

  36. A.A. Barde, J.F. Klausner, and R. Mei: Int J Hydrogen Energ, 2016, vol. 41(24), pp. 10103–19. https://doi.org/10.1016/j.ijhydene.2015.12.129.

    Article  CAS  Google Scholar 

  37. J.D. Hancock and J.H. Sharp: J Am Ceram Soc, 1972, vol. 55(2), pp. 74–7. https://doi.org/10.1111/J.1151-2916.1972.TB11213.X.

    Article  CAS  Google Scholar 

  38. X.Y. Hua: Acta Metall Sin, 2023, https://doi.org/10.1016/j.jallcom.2005.0.4.009.

    Article  Google Scholar 

  39. G. Martin and P. Bellon: Adv. Res. App., 1996, vol. 50, pp. 189–331. https://doi.org/10.1016/S0081-1947(08)60605-0.

    Article  Google Scholar 

  40. S.K. Kuila, R. Chatterjee, and D. Ghosh: Int J Hydrogen Energy, 2016, vol. 41(22), pp. 9256–66. https://doi.org/10.1016/j.ijhydene.2016.04.075.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Natural science foundation of Hebei Province (E2021209101; E2022209112); Science and Technology Research Projects of Higher Education Institutions in Hebei Province (ZD2022125); Tangshan Talent funding Project (A20220212)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukuo Hong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 845 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Ai, L., Hong, L. et al. Comparison Between Microwave Heating and Conventional Heating of Magnetite During Hydrogen Reduction. Metall Mater Trans B 55, 114–127 (2024). https://doi.org/10.1007/s11663-023-02944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02944-9

Navigation