Log in

Thermodynamics of Impurities Removal From Si–Fe Alloy by CaO–Al2O3–SiO2–Na2O Slag Refining

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slag refining of molten Si–Fe alloy was investigated with the ultimate goal of producing silicon suitable for solar cell application. Multiple compositions of quaternary slag of CaO–Al2O3–SiO2–Na2O were used to treat Si-20 wt pct Fe alloy at 1300 °C. Partition ratio of B increased with increasing the slag basicity, and the maximum partition ratio of boron was found to be 4.3. The addition of 10 wt pct Na2O results in higher removal of boron. The modified quasichemical model was utilized to compute the activity of silica at 1300 °C which was then used to calculate the borate and phosphate capacities of the slag. A comparative thermodynamic assessment was conducted by establishing a relationship between corrected optical basicity and borate and phosphate capacities. The evaluation showed that lower temperature is favorable for increasing borate and phosphate capacities in slag at particular basicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.M. Wilson: J. Phys. D, 2020, vol. 53(49), p. 493001.

    Google Scholar 

  2. A.J. Trappey: J. Clean. Prod., 2016, vol. 112, pp. 1709–16.

    Google Scholar 

  3. Photovoltaics Report: Fraunhofer Institute for Solar Energy Systems ISE (2022 February). https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html. Accessed 28 March 2022.

  4. B.S. Xakalashe and M. Tangstad: Chem. Technol., 2012. pp. 32–37.

  5. D. Helmreich and G. Ast: J. Electrochem. Soc. Meeting St. Louis, 1980, vol. 127, p. 111.

    Google Scholar 

  6. R. Hopkin, R.G. Seidensticker, J.R. Davis, P. Rai-Choudhury, P.D. Blais, and J.R. McCormick: J. Cryst. Growth, 1977, vol. 42, pp. 493–98.

    Google Scholar 

  7. J. Davis, A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. Mccormick, and H.C. Mollenkopf: IEEE Trans. Electron Devices, 1980, vol. 27(4), pp. 677–87.

    Google Scholar 

  8. F.A. Trumbore: Bell Syst. Tech. J., 1960, vol. 39(1), pp. 205–33.

    Google Scholar 

  9. E. Øvrelid, B. Geerligs, A. Wærnes, O. Raaness, I. Solheim, R. Jensen, and B. Wiersma: Proceedings Silicon for the Chem. Ind. VIII, 2006.

  10. M. De Wild-Scholten and E. Alsema: Refocus, 2004, vol. 5(5), pp. 46–49.

    Google Scholar 

  11. S. Pizzini: Advanced Silicon Materials for Photovoltaic Applications, 1st ed. Wiley, New York, 2012, pp. 31–35.

    Google Scholar 

  12. A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin, and P.R. Mei: Sol. Energy Mater. Sol. Cells, 2008, vol. 92(4), pp. 418–24.

    Google Scholar 

  13. B. Sørensen: Renewable Energy: Renewable Energy Origins and Flows, 1st ed. Routledge, London, 2018, pp. 182–88.

    Google Scholar 

  14. E. Williams: The Case of High-Purity Silicon and its App. in IT and Renew. Energy, United Nation University, Tokyo, Japan. 2000.

  15. L. J. Geerligs, G. P. Wyers, R. Jensen, O. Raaness, A. N. Waernes, S. Santén, and B. Wiersma: 12th Works. Cryst. Silicon Sol. Cell Mater. and Process., NREL National Renewable Energy Laboratory, Breckenridge, CO, August 2002. pp. 215–18.

  16. L. Ma, Z. Yu, W. Ma, S. Qing, and J. Wu: Silicon, 2019, vol. 11, pp. 1383–91.

    Google Scholar 

  17. C. Wagner: Metall. Trans. B, 1975, vol. 6(3), pp. 405–09.

    Google Scholar 

  18. L.A.V. Teixeira: ISIJ Int., 2009, vol. 49(6), pp. 777–82.

    Google Scholar 

  19. K. Morita: Treatise on Process Metallurgy, 2014. pp. 587–615.

  20. S. Tabuchi and N. Sano: Metall. Trans. B, 1984, vol. 15(2), pp. 351–56.

    Google Scholar 

  21. J.J. Wu, Y.L. Li, K.X. Wei, Y.A.N.G. Bin, and Y.N. Dai: Trans. Nonferr. Met. Soc. China, 2014, vol. 14(4), pp. 1231–36.

    Google Scholar 

  22. J. Safarian, G. Tranell, and M. Tangstad: Metall Mater. Trans. B, 2013, vol. 44B, pp. 571–83.

    Google Scholar 

  23. X. Ma, M. Yoshikawa, and K. Morita: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 528–33.

    Google Scholar 

  24. R. Al-khazraji, Y.Q. Li, and L.F. Zhang: Int. J. Miner. Metall. Mater., 2018, vol. 25(12), pp. 1439–46.

    Google Scholar 

  25. L. Zhang, Y. Tan, F.M. Xu, J.Y. Li, H.Y. Wang, and Z. Gu: Sep. Sci. Technol., 2013, vol. 48(7), pp. 1140–44.

    Google Scholar 

  26. M. Johnston and M. Barati: Sol. Energy Mater. Sol. Cells, 2010, vol. 94(12), pp. 2085–90.

    Google Scholar 

  27. J. Li, L. Zhang, Y. Tan, D. Jiang, D. Wang, and Y. Li: Vacuum, 2014, vol. 103, pp. 33–37.

    Google Scholar 

  28. T. Yoshikawa and K. Morita: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 731–36.

    Google Scholar 

  29. T. Yoshikawa and K. Morita: ISIJ int., 2005, vol. 45(7), pp. 967–71.

    Google Scholar 

  30. T. Yoshikawa and K. Morita: ISIJ Int., 2007, vol. 47(4), pp. 582–84.

    Google Scholar 

  31. T. Yoshikawa, A. Arimura, and K. Morita: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 837–42.

    Google Scholar 

  32. T. Yoshikawa and K. Morita: Sci. Tech. Adv. Mater., 2003, vol. 4(6), pp. 531–37.

    Google Scholar 

  33. L. Hu, Z. Wang, X. Gong, Z. Guo, and H. Zhang: Sep. Purif. Technol., 2013, vol. 118, pp. 699–703.

    Google Scholar 

  34. C.H. Lu, M. Fang, H.X. Lai, L.Q. Huang, J. Chen, J.T. Li, and X.T. Luo: Trans. Tech. Publ. Ltd., 2013, vol. 690, pp. 962–66.

    Google Scholar 

  35. L.T. Khajavi, K. Morita, T. Yoshikawa, and M. Barati: J. Alloys Compd., 2015, vol. 619, pp. 634–38.

    Google Scholar 

  36. L.T. Khajavi and M. Barati: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 268–75.

    Google Scholar 

  37. L.T. Khajavi and M. Barati: High-Temp. Mater. Process., 2012, vol. 31(4–5), pp. 627–31.

    Google Scholar 

  38. S. Thomas, L. Huang, and M. Barati: JOM, 2021, vol. 73(1), pp. 260–81.

    Google Scholar 

  39. S. Thomas, M. Barati, and K. Morita: JOM, 2021, vol. 73(1), pp. 282–92.

    Google Scholar 

  40. A. Hosseinpour and L.T. Khajavi: J. Alloys Comp., 2018, vol. 768, pp. 545–52.

    Google Scholar 

  41. A. Hosseinpour and L.T. Khajavi: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1773–81.

    Google Scholar 

  42. M. Li, T. Utigard, and M. Barati: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 221–28.

    Google Scholar 

  43. T.B. Massalski: Am. Soc. Met. Mater. Park, 1986, vol. 1, pp. 28–29.

    Google Scholar 

  44. G.I.A. Taposhe and L.T. Khajavi: JOM, 2021, vol. 73(2), pp. 729–35.

    Google Scholar 

  45. Y.Y. Hu, D.L. Lu, T. Lin, Y. Liu, B. Wang, C.J. Guo, and Q.S. Li: Adv. Mater. Res. Trans. Tech. Publ., 2011, vol. 156, pp. 882–85.

    Google Scholar 

  46. M. Tanahashi, Y. Shinpo, T. Fujisawa, and C. Yamauchi: Shiegn Sozai, 2002, vol. 118(7), pp. 497–505.

    Google Scholar 

  47. M. Li, T. Utigard, and M. Barati: Metall. Mater. Tans. B, 2015, vol. 46B, pp. 74–82.

    Google Scholar 

  48. I. Jung: Critical evaluation and thermodynamic modeling of phase equilibria in multicomponent oxide systems. PhD thesis, Ecole Polytechnique, Montreal, Canada, 2003.

  49. A.D. Pelton and M. Blander: Calphad, 1988, vol. 12(1), pp. 97–108.

    Google Scholar 

  50. A.D. Pelton and M. Blander: Metall. Trans. B, 1986, vol. 17(4), pp. 805–15.

    Google Scholar 

  51. M. Blander and A.D. Pelton: Geochim. Cosmochim. Acta, 1987, vol. 51(1), pp. 85–95.

    Google Scholar 

  52. G. Eriksson, P. Wu, and A.D. Pelton: Calphad, 1993, vol. 17(2), pp. 189–205.

    Google Scholar 

  53. G. Eriksson and A.D. Pelton: Metall. Trans. B, 1993, vol. 24(5), pp. 807–16.

    Google Scholar 

  54. P. Chartrand and A.D. Pelton: Calphad, 1999, vol. 23(2), pp. 219–30.

    Google Scholar 

  55. J. Chipman, J.C. Fulton, N. Gokcen, and G.R. Caskey: Acta Metall., 1954, vol. 2(3), pp. 439–50.

    Google Scholar 

  56. A. Roine: Proceedings Int. Symposium on Computer Soft. Chem. Extractive Metallurgy. Pergamon, 1989.

  57. J. Miettinen: Calphad, 1998, vol. 22(2), pp. 231–56.

    Google Scholar 

  58. R. Noguchi, K. Suzuki, F. Tsukihashi, and N. Sano: Metall. Mater. Trans. B, 1994, vol. 25, pp. 903–07.

    Google Scholar 

  59. A. Zaitsev, N.Y. Zaitseva, and A. Kodentsov: J. Mater. Chem., 2003, vol. 13(4), pp. 943–50.

    Google Scholar 

  60. D.R. Gaskell and D.E. Laughlin: Introduction to the Thermodynamics of Materials, 6 ed., vol. 53, CRC Press, Boca Raton, 2017, pp. 9363–67.

    Google Scholar 

  61. K.C. Mills: ISIJ Int., 1993, vol. 33(1), pp. 148–55.

    Google Scholar 

Download references

Acknowledgments

The present work has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2017-04669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golam Ismot Ara Taposhe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taposhe, G.I.A., Khajavi, L.T. Thermodynamics of Impurities Removal From Si–Fe Alloy by CaO–Al2O3–SiO2–Na2O Slag Refining. Metall Mater Trans B 53, 4019–4028 (2022). https://doi.org/10.1007/s11663-022-02662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02662-8

Navigation