Log in

Ecofriendly Selective Extraction of Vanadium from Vanadium Slag with High Chromium Content via Magnesiation Roasting–Acid Leaching

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Conventional vanadium (V) extraction methods for vanadium-bearing slags create high chromium content discharge Cr(VI)-containing hazardous wastes. In this article, an ecofriendly magnesiation roasting-acid leaching method is proposed to selectively extract V from the slag. In the near-zero discharge process the generation of Cr(VI) is eliminated. Cr present as (Fe0.6Cr0.4)2O3 in the leach residue in association with Fe2O3 and SiO2 can be directly smelted to produce ferrochrome. From the obtained leach liquor, V, Mg and Mn are recovered successively. At pH 3.0, V precipitates as ammonium polyvanadate, which is calcined to V2O5 (99.14 pct pure) with a total recovery rate of 94.10 pct. Meanwhile, the NH3 gas produced during calcination is recycled for pH adjustment. At pH 8 to 9, Mn precipitates as hydroxide and is calcined to produce a MnO by-product (91.10 pct pure; recovery rate 47.96 pct). Subsequently, at pH 10 and above, dissolved Mg is precipitated as Mg(OH)2 and calcined to obtain MgO (purity = 99.12 pct; recovery = 90.47 pct). The calcine MgO is recycled as a roasting additive. The evaporation of residual solution yielded (NH4)2SO4 crystals and condensed water, which are recycled in vanadate precipitation and acid leaching, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.R. Moskalyk and A.M. Alfantazi: Miner. Eng., 2003, vol. 16, pp. 793–805.

    Article  CAS  Google Scholar 

  2. H.Y. Li, Y. Yang, M. Zhang, W. Wei, and B. **e: J. Hazard. Mater., 2019, vol. 368, pp. 670–9.

    Article  CAS  Google Scholar 

  3. S.Y. Chen, X.J. Fu, M.S. Chu, Z.G. Liu, and J. Tang: J. Clean. Prod., 2015, vol. 101, pp. 122–8.

    Article  CAS  Google Scholar 

  4. B. Dhal, H.N. Thatoi, N.N. Das, and B.D. Pandey: J. Hazard Mater., 2013, vol. 250–251, pp. 272–91.

    Article  Google Scholar 

  5. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang: Hydrometallurgy., 2011, vol. 109, pp. 116–24.

    Article  CAS  Google Scholar 

  6. M. Karthikeyan and S. Um: J. Alloys Compd., 2017, vol. 695, pp. 1770–7.

    Article  CAS  Google Scholar 

  7. X. Liang, G. Gao, Y. Liu, T. Zhang, and G. Wu: J. Alloys Compd., 2017, vol. 715, pp. 374–83.

    Article  CAS  Google Scholar 

  8. H.-Y. Li, H.-X. Fang, K. Wang, W. Zhou, Z. Yang, X.-M. Yan, W.-S. Ge, Q.-W. Li, and B. **e: Hydrometallurgy., 2015, vol. 156, pp. 124–35.

    Article  CAS  Google Scholar 

  9. H.-Y. Li, D. Li, Y. Guo, Y. Yang, W. Wei, and B. **e: Sens Actuators B., 2018, vol. 277, pp. 30–8.

    Article  CAS  Google Scholar 

  10. J. Zhang, W. Zhang, L. Zhang, and S. Gu: Int. J. Miner. Process., 2015, vol. 138, pp. 20–9.

    Article  CAS  Google Scholar 

  11. X.-S. Li, B. **e, G.-E. Wang, and X.-J. Li: Trans. Nonferrous Met. Soc. China., 2011, vol. 21, pp. 1860–7.

    Article  CAS  Google Scholar 

  12. H.-Y. Li, K. Wang, W.-H. Hua, Z. Yang, W. Zhou, and B. **e: Hydrometallurgy., 2016, vol. 160, pp. 18–25.

    Article  CAS  Google Scholar 

  13. T. Jiang, J. Wen, M. Zhou, and X. Xue: J. Alloys Compd., 2018, vol. 742, pp. 402–12.

    Article  CAS  Google Scholar 

  14. J. Wen, T. Jiang, M. Zhou, H.-Y. Gao, J.-Y. Liu, and X.-X. Xue: Int. J. Min. Met. Mater., 2018, vol. 25, pp. 515–26.

    Article  CAS  Google Scholar 

  15. B. Liu, H. Du, S.-N. Wang, Y. Zhang, S.-L. Zheng, L.-J. Li, and D.-H. Chen: AlChE J., 2013, vol. 59, pp. 541–52.

    Article  CAS  Google Scholar 

  16. H.-Y. Li, C. Wang, M. Lin, Y. Guo, and B. **e: Powder Technol., 2020, vol. 360, pp. 503–8.

    Article  CAS  Google Scholar 

  17. Y.L. Ji, S.B. Shen, J.H. Liu, and Y. Xue: J. Clean. Prod., 2017, vol. 149, pp. 1068–78.

    Article  CAS  Google Scholar 

  18. H.B. Liu, H. Du, D.W. Wang, S.N. Wang, S.L. Zheng, and Y. Zhang: Trans. Nonferrous Met. Soc. China., 2013, vol. 23, pp. 1489–500.

    Article  CAS  Google Scholar 

  19. J. Wen, T. Jiang, J. Wang, H. Gao, and L. Lu: J. Hazard. Mater., 2019, vol. 378, p. 120733.

    Article  CAS  Google Scholar 

  20. J. Wen, T. Jiang, Y. Liu, and X. Xue: Miner. Process. Extr. Metal. Rev., 2019, vol. 40, pp. 56–66.

    Article  CAS  Google Scholar 

  21. S.A. Katz and H. Salem: J. Appl. Toxicol., 1993, vol. 13, pp. 217–24.

    Article  CAS  Google Scholar 

  22. J. Wen, T. Jiang, H. Gao, W. Zhou, Y. Xu, X. Zheng, Y. Liu, and X. Xue: J. Environ. Manag., 2019, vol. 244, pp. 119–26.

    Article  CAS  Google Scholar 

  23. J. Wen, T. Jiang, Y. Xu, J. Cao, and X. Xue: J. Ind. Eng. Chem., 2019, vol. 71, pp. 327–35.

    Article  CAS  Google Scholar 

  24. Y. Ji, S. Shen, J. Liu, S. Yan, and Z. Zhang: ACS Sustain. Chem. Eng., 2017, vol. 5, pp. 6008–15.

    Article  CAS  Google Scholar 

  25. J. Wen, T. Jiang, Y. Xu, J. Liu, and X. Xue: Metall. MateR. Trans. B., 2018, vol. 49, pp. 1471–81.

    Article  CAS  Google Scholar 

  26. J. Wen, T. Jiang, J. Wang, L. Lu, and H. Sun: J. Clean. Prod., 2020, vol. 261, p. 121205.

    Article  CAS  Google Scholar 

  27. G. Wang, M.-M. Lin, J. Diao, H.-Y. Li, B. **e, and G. Li: ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 18133–41.

    Article  CAS  Google Scholar 

  28. J. Wen, T. Jiang, W.Y. Zhou, H.Y. Gao, and X.X. Xue: Sep. Purif. Technol., 2019, vol. 216, pp. 126–35.

    Article  CAS  Google Scholar 

  29. J. Cheng, C. J. Wang, S. Shen, J. Diao, B. **e and H.-Y. Li, Jom, 2021, pp. 1–7.

  30. H.-X. Fang, H.-Y. Li, and B. **e: ISIJ Int., 2012, vol. 52, pp. 1958–65.

    Article  CAS  Google Scholar 

  31. J. Zhang, W. Zhang, and Z. Xue: Metals., 2019, vol. 9, p. 21.

    Article  CAS  Google Scholar 

  32. H.-Y. Li, C.-J. Wang, Y.-H. Yuan, Y. Guo, J. Diao, and B. **e: J. Clean. Prod., 2020, vol. 260, p. 121091.

    Article  CAS  Google Scholar 

  33. O. Pelletier, P. Davidson, C. Bourgaux, C. Coulon, S. Regnault, and J. Livage: Langmuir., 2000, vol. 16, pp. 5295–303.

    Article  CAS  Google Scholar 

  34. R. Kumar and A.K. Biswas: Hydrometallurgy., 1986, vol. 15, pp. 267–80.

    Article  CAS  Google Scholar 

  35. F.M. Capece, V. Di Castro, C. Furlani, G. Mattogno, C. Fragale, M. Gargano, and M. Rossi: J. Electron. Spectrosc. Relat. Phenom., 1982, vol. 27, pp. 119–28.

    Article  CAS  Google Scholar 

  36. E. Desimoni, C. Malitesta, P.G. Zambonin, and J.C. Riviere: Surf. Interface Anal., 1988, vol. 13, pp. 173–9.

    Article  CAS  Google Scholar 

  37. X.-S. Li and B. **e: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 595–601.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 52074050); Chongqing Science and Technology Bureau (cstc2019jcyjjqX0006, cstc2021ycjh-bgzxm0075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 5, 2021; accepted November 23, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HY., Cheng, J., Wang, CJ. et al. Ecofriendly Selective Extraction of Vanadium from Vanadium Slag with High Chromium Content via Magnesiation Roasting–Acid Leaching. Metall Mater Trans B 53, 604–616 (2022). https://doi.org/10.1007/s11663-021-02402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02402-4

Navigation