Log in

An Attempt to Correlate Electrochemical Desulfurization of Molten Iron Using CaO–Al2O3–MgOsat. Molten Slag and Applied Electricity at 1673 K (1400 °C)

  • Topical Collection: Science and Technology of Molten Slags, Fluxes, and Salts
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Desulfurization of molten iron by molten slag is an electrochemical reaction. Previous investigations confirmed that applying electricity could enhance the desulfurization of molten iron, but a quantitative relation between the electricity and the desulfurization was not fully elucidated. The present study attempted to correlate the extent of the electrochemical desulfurization with the applied electricity via a series of high-temperature desulfurization experiments and thermodynamic analyses. A molten iron containing C and S was allowed to react with CaO–\(\hbox {Al}_{{2}}\hbox {O}_{{3}}\)\(\hbox {MgO}_{\text {sat.}}\) slag at 1673 K (1400 \(^\circ \)C), with and without the electricity of constant current. S distribution coefficients (\(L_{\text {S}}\) = (pct S)/[pct S]) were obtained after the normal and the electrochemical equilibria, respectively. The obtained results were interpreted by employing the Nernst equation in order to extract the potential difference (\(\varDelta \phi _{\text {S}}\)) for the electrochemical desulfurization. It was found that applying electric current (I) increased the \(L_{\text {S}}\) after the electrochemical desulfurization, which resulted in the increase of \(\varDelta \phi _{\text {S}}\). A resistance, \(R_{\text {DeS}} = \varDelta \phi _{\text {S}}\)/I, or a specific resistivity, \(\rho _{\text {DeS}} = \varDelta \phi _{\text {S}}\)/(I/A), where A is the cathodic area, for the electrochemical desulfurization was defined, which can be used to characterize the susceptibility to the electrochemical desulfurization. It was found that \(R_{\text {DeS}}\) was independent of the I within the range of this investigation, decreased as (pct CaO)/(pct \(\hbox {Al}_{{2}}\hbox {O}_{{3}}\)) increased and was proportional to the resistance of the slag (\(R_{\text {slag}}\)). A favorable condition for the electrochemical desulfurization is not the same as that for the normal desulfurization condition. The \(\varDelta \phi _{\text {S}}\), which is an indicator of the extent of electrochemical desulfurization, was independently predicted by employing a thermodynamic model for the oxysulfide slag. The model prediction was in a good agreement with the experimental data. The model was used to predict necessary current level for a desired electrochemical desulfurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Derge, W.O. Philbrook, and K.M. Goldman: JOM, 1950, vol. 2, pp. 1111-19.

    Article  Google Scholar 

  2. S. Ramachandran, T.B. King, and N.J. Grant: JOM, 1956, vol. 8, pp. 1549–88.

    Article  CAS  Google Scholar 

  3. T.B. King and S. Ramachandran: in Physical Chemistry of Steelmaking, J.F. Elliott, ed., Wiley, New York, 1958, pp. 125–35.

    Google Scholar 

  4. M. Tokuda and M. Ohtani: in Chemical Metallurgy of Iron and Steel, B.B. Argent and M. Davies, eds., Unwin Brothers Ltd., Surrey, 1973, pp. 93–95.

    Google Scholar 

  5. M.G. Frohberg, M.L. Kapoor, and A. Nilas: in Chemical Metallurgy of Iron and Steel, B.B. Argent and M. Davies, eds., Unwin Brothers Ltd., Surrey, 1973, pp. 139–43.

    Google Scholar 

  6. J.R. Wynnyckyj and S. Roy: Can. Metall. Quart., 1973, vol. 12, pp. 303-07.

    Article  CAS  Google Scholar 

  7. M. Ohtani, and N.A. Gokcen: in Physical Chemistry of Process Metallurgy, G. St Pierre, ed. Interscience, New York, 1961, pp. 1213–27.

  8. R.G. Ward and K.A. Salmon: J. Iron Steel Inst., 1963, vol. 201,pp. 222–27.

    CAS  Google Scholar 

  9. P.M. Bills and R. Littlewood: J. Iron Steel Inst., 1965, vol. 203, pp. 181–82.

    Google Scholar 

  10. T. El-Gammal, B. Yostos, and A. Pakzad: in Chemical Metallurgy of Iron and Steel, B.B. Argent and M. Davies, eds., Unwin Brothers Ltd., Surrey, 1973, pp. 144–47.

    Google Scholar 

  11. A. McLean, I.D. Sommerville, and F.L. Kemeny: Proc. 4th Int. Conf. Molten Slags Fluxes, ed. S. Ban-ya, 1992, pp. 268–73.

  12. I.D. Sommerville, M. Mishea, and A. McLean: in 14th PTD Conference Proceedings, 1995, pp. 25–36.

  13. N. Sen, M. Ghosh, U.K. Banerjee, S. Mazumdar, and H.S. Ray: Scan. J. Met., 1999, vol. 28, pp. 249–53.

    CAS  Google Scholar 

  14. D.-H. Kim, W. Kim, and Y.-B. Kang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1311-21.

    Article  Google Scholar 

  15. D.-H. Kim, W. Kim, and Y.-B. Kang: J. Electrochem. Soc., 2018, vol. 164, pp. E816-25.

    Article  Google Scholar 

  16. H.L. Han, L.W. Zhou, K. Liu, Z.H. Lu, and N. Luo: Metalurgija, 2020, vol. 59, pp. 295-98.

    CAS  Google Scholar 

  17. S.H. Lee, D.J. Min, 236, 116231 (2020)

    Article  CAS  Google Scholar 

  18. S.H. Lee and D.J. Min: Materials, 2020, vol. 13, p. 2478.

    Article  CAS  Google Scholar 

  19. M.S. Islam, M.A. Rhamdhani, and G.A. Brooks: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1–5.

    Article  Google Scholar 

  20. Z. Wang, Z. Ge, J. Liu, G. Qian and B. Du: Separation and Purification Technology, 2018, vol. 199, pp. 134-69.

    Article  CAS  Google Scholar 

  21. M.A. Rhamdhani: Private Communication (Swinburne University of Technology, 2019)

    Google Scholar 

  22. M.A. Rhamdhani, K.S. Coley, and G.A. Brooks: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 219–27.

    Article  CAS  Google Scholar 

  23. M.A. Rhamdhani, K.S. Coley, and G.A. Brooks: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 1087–91.

    Article  CAS  Google Scholar 

  24. L. Chang and K.M. Goldman: Trans. AIME, 1948, vol. 176, pp. 309–29.

    Google Scholar 

  25. R.G. Ward and K.A. Salmon: J. Iron Steel Inst., 1963, vol. 201, pp. 222–27.

    CAS  Google Scholar 

  26. Y.-B. Kang and F. Tafwidli: ISIJ Int., 2018, vol. 58, pp. 10-16.

    Article  CAS  Google Scholar 

  27. P.C. Hayes: Process Principles in Minerals & Materials Production. Hayes Publ. Co., Sherwood, QLD, Australia, 1993, p. 346.

    Google Scholar 

  28. K. Mori and Y. Matsushita: Tetsu-to-Hagane, 1952, vol. 38, pp. 531-36.

    Article  CAS  Google Scholar 

  29. A.D. Pelton, P. Chartrand, and G. Eriksson: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1409-16.

    Article  Google Scholar 

  30. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp.1361-83.

    CAS  Google Scholar 

  31. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp.1385-96.

    Article  CAS  Google Scholar 

  32. P. Chartrand and A.D. Pelton: Metall. Mater. Trans. A, 2001, vol. 32A, pp.1417-30.

    Article  CAS  Google Scholar 

  33. Y.-B. Kang and A. D. Pelton: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 979-994.

    Article  CAS  Google Scholar 

  34. Y.-B. Kang, Progress of Thermodynamic Modeling for Sulfide Dissolution in Molten Oxide Slags: Sulfide Capacity and Phase Diagram. Metall. Mater. Trans. B (2021). https://doi.org/10.1007/s11663-021-02224-4

    Article  Google Scholar 

  35. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  36. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  37. F. Tafwidli and Y.-B. Kang: ISIJ Int., 2017, vol. 57, pp. 782-90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (YBK) thanks Prof. M.A. Rhamdhani, Swinburne University of Technology, Australia, for his kind discussion on the electrochemical reaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 29, 2021; accepted July 15, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Kang, YB. An Attempt to Correlate Electrochemical Desulfurization of Molten Iron Using CaO–Al2O3–MgOsat. Molten Slag and Applied Electricity at 1673 K (1400 °C). Metall Mater Trans B 52, 2960–2970 (2021). https://doi.org/10.1007/s11663-021-02289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02289-1

Navigation