Log in

A Thermodynamic Model to Estimate the Formation of Complex Nitrides of Al x Mg(1–x)N in Silicon Steel

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A complex nitride of Al x Mg(1−x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10−7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. C.K. Hou, C.T. Hu, and S. Lee: IEEE Trans. Magn., 1991, vol. 27, pp. 4305–09.

    Article  Google Scholar 

  2. G. Lyudkovsky and P.K. Rastogi: IEEE T. Magn., 1985, vol. 21, pp. 1912–14.

    Article  Google Scholar 

  3. T. Nakayama and M. Takahashi: J. Mater. Sci., 1995, vol. 30, pp. 5979–84.

    Article  Google Scholar 

  4. T. Nakayama and T. Tanaka: J. Mater. Sci., 1997, vol. 32, pp. 1055–59.

    Article  Google Scholar 

  5. D.S. Petrovič, B. Arh, F. Tehovnik, and M. Pirnat: ISIJ Int., 2011, vol. 51, pp. 2069–75.

    Article  Google Scholar 

  6. F. Zhang, C. Ma, B. Wang, P. Zhang, Z. Ma, and Y. Zhang: Baosteel Technol. Res., 2011, vol. 5, pp. 41–45.

    Google Scholar 

  7. F. Zhang, L. Miao, Z. Zong, B. Wang, Y. Zhang, and Z. Ma: Baosteel Technol. Res., 2013, vol. 7, pp. 12–19.

    Google Scholar 

  8. H. Chunkan and L. Chunchih: ISIJ Int., 2008, vol. 48, pp. 531–39.

    Article  Google Scholar 

  9. Y. Ren, L. Zhang, and W. Fang: Metall. Res. Technol., 2017, vol. 114, p. 108.

    Article  Google Scholar 

  10. Y. Luo, L. Zhang, W. Yang, Y. Ren, and A.N. Conejo: Ironmaking Steelmaking, 2017, accepted for publication.

  11. Y.W. Li, S.L. **, Y.B. Li, L. Zhao, and Z.Y. Li: Ceram. Int., 2009, vol. 35, pp. 2241–47.

    Article  Google Scholar 

  12. A.N. Zhukov, K.P. Burdina, and K.N. Semenenko: Russ. J. Gen. Chem., 1996, vol. 66, pp. 1046–50.

    Google Scholar 

  13. R.C. Hudd, A. Jones, and M.N. Kale: Tetsu-to-Hagané, 1971, vol. 209, pp. 121–25.

    Google Scholar 

  14. M. Hillert and S. Jonsson: Metall. Trans. A, 1992, vol. 23A, pp. 3141–49.

    Article  Google Scholar 

  15. L.S. Darken, R.P. Smith, and E.W. Filer: Am. Ins. Min. Metall. Eng., 1951, vol. 191, pp. 1174–79.

    Google Scholar 

  16. I. Shimose: J. Phys. Soc. Jpn., 1954, vol. 9, pp. 451–56.

    Article  Google Scholar 

  17. W.C. Leslie, R.L. Rickett, C.L. Dotson, and C.S. Walton: J. Am. Soc. Met., 1954, vol. 46, pp. 1470–99.

    Google Scholar 

  18. P. König, W. Scholz, and H. Ulmer: Steel Res. Int., 1961, vol. 32, pp. 541–56.

    Google Scholar 

  19. L.A. Erasmus: Tetsu-to-Hagané, 1964, vol. 202, pp. 32–41.

    Google Scholar 

  20. Y. Kagan and I.S. Lyubutin: Steelmaking Data Sourcebook, revised edition, Gordon and Breach Science Publishers, New York, NY, 1988.

    Google Scholar 

  21. T. Gladman and F.B. Pickering: Tetsu-to-Hagané, 1967, vol. 205, pp. 653–64.

    Google Scholar 

  22. M. Mayrhofer: BHM, 1975, vol. 120, pp. 312–21.

    Google Scholar 

  23. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, Japan, 2010.

    Google Scholar 

  24. L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1907–16.

    Article  Google Scholar 

  25. W.Y. Kim, J.G. Kang, C.H. Park, J.B. Lee, and J.J. Pak: ISIJ Int., 2007, vol. 47, pp. 945–54.

    Article  Google Scholar 

  26. M.K. Pake, J.M. Jang, H.J. Kang, and J.J. Pak: ISIJ Int., 2013, vol. 53, pp. 535–37.

    Article  Google Scholar 

  27. F.L. de Alcântara, R.A.N.M. Barabosa, and M.A. da Cunha: ISIJ Int., 2013, vol. 53, pp. 1211–14.

    Article  Google Scholar 

  28. H. Sun, Y.C. Liu, and M.J. Lu: ISIJ Int., 2009, vol. 49, pp. 771–76.

    Article  Google Scholar 

  29. Y. Luo, A.N. Conejo, L. Zhang, L. Chen, and L. Cheng: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2348–2360.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the National Science Foundation of China (Grant Nos. 51504020 and 51404019), the Bei**g Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at the University of Science and Technology Bei**g (USTB, Bei**g, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted September 1, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zhang, L., Li, M. et al. A Thermodynamic Model to Estimate the Formation of Complex Nitrides of Al x Mg(1–x)N in Silicon Steel. Metall Mater Trans B 49, 894–901 (2018). https://doi.org/10.1007/s11663-018-1219-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1219-6

Keywords

Navigation