Log in

Kinetics and phase transformation evaluation of Fe-Zn-Al mechanically alloyed phases

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fixed composition ratios of Fe and Zn corresponding to γ-(Fe3Zn110), Γ1-(Fe5Zn21), δ-(FeZn7), and ζ-(FeZn13) with the addition of 5 pct Al (wt) were ball milled in an argon gas atmosphere to form homogenous alloys. Nonisothermal kinetic analyses of the mechanically alloyed materials, based on differential scanning calorimetry (DSC) measurements, revealed two diffusion-controlled processes during the evolution of the δ+5 pct Al and ζ+5 pct Al compositions with activation energies of 227±2 and 159±1 kJ/mole, respectively. Other endothermic and exothermic reactions detected for these compositions are consistent with the Fe-Zn-Al equilibrium phase systems with respect to the formation of the Fe3Al, Fe2Al5, and δ-FeZn7 phases Based on the evidence of FeAl2 formation at 440 °C for the ζ+5 pct Al composition from X-ray diffraction (XRD) and DSC measurements, the revision/re-evaluation of the Fe-Zn-Al equilibrium phase diagrams is proposed. The Γ+5 pct Al and Γ1+5 pct Al compositions evolved similarly through the same fields, except at 400 °C, where the former consisted of α-Fe + Γ + δ, while the later was without the Γ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.W. Storey: Metall. Chem. Eng., 1916, vol. 14, pp. 683–91.

    CAS  Google Scholar 

  2. J.L. Schueler: Trans. Am. Electrochem. Soc., 1925, vol. 47, pp. 201–26.

    Google Scholar 

  3. S.E. Hadden: J. Iron Steel Inst., 1952, vol. 171, pp. 121–27.

    CAS  Google Scholar 

  4. Frank C. Porter: in Corrosion Resistance of Zinc and Zinc Alloys, Philip A. Schwietzer ed., Marcel Dekker, Inc., New York, NY, 1994.

    Google Scholar 

  5. Mingyuan Gu: Ph.D. Thesis, Lehigh University, Bethlehem, PA, 1989.

    Google Scholar 

  6. D. Horstmann and F.K. Peters: Proc. 9th Int. Hot Dip Galvanizing Conf., Dusseldorf, 1970, London Industrial Newspapers Ltd., London, 1970, pp. 75–106.

    Google Scholar 

  7. S.W.K. Morgan: Zinc and Its Alloys and Compounds, Ellis Horwood Limited, Halsted Press: A Division of John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  8. C. Politis and W.L. Johnson: J. Appl. Phys. Lett. 1986, vol. 60, pp. 1147–51.

    CAS  Google Scholar 

  9. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  10. K.B. Gerasimov, A.A. Gusev, E.Y. Ivanov, and V.V. Boldyrev: J. Mater. Sci., 1991, vol. 26, pp. 2495–2500.

    Article  CAS  Google Scholar 

  11. Orfurd Kubaschewski: Iron Binary Phase Diagrams, Springer, Berlin, 1982, pp. 172–75.

    Google Scholar 

  12. V. Raghavan: Phase Diagrams of Ternary Iron Alloys, The Indian Institute of Metals, Delhi, 1988.

    Google Scholar 

  13. Gautam Ghosh: in Ternary Alloys, G. Petzow and G. Effenberg, eds., ASM, INTERNATIONAL, Materials Park, OH, 1992, pp. 505–23.

    Google Scholar 

  14. H.E. Kissinger: Analyt. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  15. E.J. Mittemeijer, A. van Gant, and P.J. vander Schaaf: Metall. trans. A, 1986, vol. 17A, pp. 1441–45.

    CAS  Google Scholar 

  16. E.J. Mittemeijer, L. Cheng, P.J. vander Schaaf, C.M, Brakman, and B.M. Korevaar: Metall. Trans. A, 1988, vol. 19A, pp. 925–32.

    CAS  Google Scholar 

  17. O.N.C. Uwakweh, J.P. Bauer, and J.M.R. Genin: Metall. Trans. A, 1990, vol. 21A, pp. 589–602.

    CAS  Google Scholar 

  18. N. Dreulle: U.S. Patent 4,238,532, 1980.

  19. D. Horstmann: Reactions between Iron and Molten Zinc, Zinc Development Association, London, 1978, p. 21.

    Google Scholar 

  20. Z.W. Chen, N.F. Kennon, J.B. See, and M.A. Barter: JOM, 1992, Jan., pp. 22–26.

  21. T. Isobe and T. Hashimoto: U.S. Patent 4,610,936, 1986.

  22. JCPDS: Powder Diffraction File, International Center for Diffraction Data, 1993, Swarthmore, PA.

  23. D.C. Cook and R.G. Grant: Identification of the Iron-Zinc Phases in Galvanneal Steel Coatings by Mössbauer Spectroscopy and X-Ray Diffraction, Progress Report No. 1, ILZRO, Research Triangle Park, NC, June 1993.

    Google Scholar 

  24. L.F. Mondolfo: Aluminum Alloys, Structure and Properties, Butterworth and Co., London, 1976, p. 400.

    Google Scholar 

  25. D.J. Willis: Proc. Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (GALVATECH), The Iron and Steel Institute of Japan, Tokyo, 1989, pp. 351–58.

    Google Scholar 

  26. S.M. Makimattila and E. Ristolainen: Zinc Coated Steel Sheet, Proc. 1st Int. Conf. on Zinc Coated Steel Sheet, Munich, Zinc Development Association, London, U.K., 1985, pp. B1-B6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uwakweh, O.N.C., Liu, Z. Kinetics and phase transformation evaluation of Fe-Zn-Al mechanically alloyed phases. Metall Mater Trans A 28, 517–525 (1997). https://doi.org/10.1007/s11661-997-0039-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0039-0

Keywords

Navigation