Log in

Effect of Quenching and Partitioning on Microstructure and Mechanical Properties of High-Carbon Nb Microalloyed Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, high-carbon Nb microalloyed hot rolled steel plates are subjected to quenching and partitioning (Q&P) treatment at different temperatures and time durations. Dilatometry results show that increasing cooling rate (CR) leads to suppression of transformation start and finish temperatures of high-temperature transformation products like pearlite (P) or bainite (B), whereas martensite (M) transformation triggers with increasing cooling rate from 5 to 50 °C/s. The observations made by optical (OM), scanning (SEM), and transmission electron microscopy (TEM) reveal mixed-phase microstructures consisting of preformed/tempered martensite (PTM), retained austenite (RA), twin martensite (TM), and lower bainite (LB) for the isothermally heat-treated (IHT) samples subjected to Q&P at 200 °C and 180 °C for 30 minutes. The maximum volume percentage of RA (\({V}_{\gamma }\)) and C content in RA (\({C}_{\gamma }\)) is witnessed in the IHT samples subjected to Q&P for 30 minutes at 200 °C and 180 °C, respectively, followed by the hot rolled air-cooled (HRAC) sample. The formation of very fine NbC precipitates (~17 to 33 nm) is also evident in HRAC and Q&P at 160 °C for 30 minutes samples, which are expected to contribute significantly to precipitation strengthening. Hardness shows an increasing trend from 36 HRC to 65 HRC with increasing CR from 0.5 to 50 °C/s. The best combinations of the ultimate tensile strength (UTS) and total elongation (TEL) in Q&P 200 samples (36043 MPa pct) followed by Q&P 180 samples (32759 MPa pct) can be correlated with their higher values of \({V}_{\gamma }\) and \({C}_{\gamma }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. R.K. Barik, A. Ghosh, M.B. Sk, S. Biswal, A. Dutta, and D. Chakrabarti: Acta Mater., 2021, vol. 214, 116988. https://doi.org/10.1016/j.actamat.2021.116988.

    Article  CAS  Google Scholar 

  2. S. Behera, R.K. Barik, M.B. Sk., R. Mitra and D. Chakrabarti: Mater. Sci. Eng. A, 2019, vol. 764, 138256. https://doi.org/10.1016/j.msea.2019.138256

  3. J. Kobayashi, S.M. Song, and K. Sugimoto: ISIJ Int., 2012, vol. 52(6), pp. 1124–29. https://doi.org/10.2355/isi**ternational.52.1124.

    Article  CAS  Google Scholar 

  4. S.S. Nayak, R. Anumolu, R.D.K. Misra, K.H. Kim, and D.L. Lee: Mater. Sci. Eng. A, 2008, vol. 498, pp. 442–56. https://doi.org/10.1016/j.msea.2008.08.028.

    Article  CAS  Google Scholar 

  5. J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22. https://doi.org/10.1016/S1359-6454(03)00059-4.

    Article  CAS  Google Scholar 

  6. G. Mandal, S.K. Ghosh, S. Bera, and S. Mukherjee: Mater. Sci. Eng. A, 2016, vol. 676, pp. 56–64. https://doi.org/10.1016/j.msea.2016.08.094.

    Article  CAS  Google Scholar 

  7. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Acta Mater., 2011, vol. 59(15), pp. 6059–68. https://doi.org/10.1016/j.actamat.2011.06.014.

    Article  CAS  Google Scholar 

  8. M.J. Santofimia, R.H. Petrov, L. Zhao, and J. Sietsma: Mater. Char., 2014, vol. 92, pp. 91–95. https://doi.org/10.1016/j.matchar.2014.03.003.

    Article  CAS  Google Scholar 

  9. F. Hajyakbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia: Acta Mater., 2016, vol. 104, pp. 72–83. https://doi.org/10.1016/j.actamat.2015.11.032.

    Article  CAS  Google Scholar 

  10. E.P. Da Silva, D. De Knijf, W. Xu, C. Fojer, Y. Houbaert, J. Sietsma, and R. Petrov: Mater. Sci. Technol., 2015, vol. 31, pp. 808–16. https://doi.org/10.1179/1743284714y.0000000719.

    Article  Google Scholar 

  11. I. Miettunen, S. Ghosh, M.C. Somani, S. Pallaspuro, and J. Komi: J. Mater. Res. Technol., 2021, vol. 11, pp. 1045–60. https://doi.org/10.1016/j.jmrt.2021.01.085.

    Article  CAS  Google Scholar 

  12. S. Pashangeh, M.C. Somani, S.S.G. Banadkouki, H.R.K. Zarchi, P. Kaikkonen, and D.A. Porter: Mater. Charact., 2020, vol. 162, p. 110224. https://doi.org/10.1016/j.matchar.2020.110224.

    Article  CAS  Google Scholar 

  13. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor: Acta Mater., 2015, vol. 90, pp. 417–30. https://doi.org/10.1016/j.actamat.2015.01.024.

    Article  CAS  Google Scholar 

  14. B. Kim, J. Sietsma, and M.J. Santofimia: Mater. Des., 2017, vol. 127, pp. 336–45. https://doi.org/10.1016/j.matdes.2017.04.080.

    Article  CAS  Google Scholar 

  15. A.L.A. de Araujo: Mines Theses & Dissertations, 2016, pp. 1-118. https://hdl.handle.net/11124/170039

  16. Q. Feng, L. Li, W. Yang, and Z. Sun: Mater. Sci. Eng. A, 2014, vol. 605, pp. 14–21. https://doi.org/10.1016/j.msea.2014.03.051.

    Article  CAS  Google Scholar 

  17. E. Pereloma, I. Timokhina, and P. Hodgson: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 448–52.

    Article  Google Scholar 

  18. J. Zhang, Z. Dai, L. Zeng, X. Zuo, J. Wan, Y. Rong, N. Chen, J. Lu, and H. Chen: Acta Mater., 2021, vol. 217, p. 117176. https://doi.org/10.1016/j.actamat.2021.117176.

    Article  CAS  Google Scholar 

  19. I. Dey, R. Saha, and S.K. Ghosh: Int. J. Mater. Product Technol., 2021, vol. 62(1/2/3), pp. 111–25. https://doi.org/10.1504/IJMPT.2021.115216.

    Article  CAS  Google Scholar 

  20. N. Zhong, X.D. Wang, L. Wang, and Y.H. Rong: Mater. Sci. Eng. A, 2009, vol. 506, pp. 111–16. https://doi.org/10.1016/j.msea.2008.11.014.

    Article  CAS  Google Scholar 

  21. J. Trzaska, A. Jagiello, and L.A. Dobrzanski: Arch. Mater. Sci. Eng., 2009, vol. 39, pp. 13–20.

    Google Scholar 

  22. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24. https://doi.org/10.1063/1.1750631.

    Article  CAS  Google Scholar 

  23. J. Johnson and R. Mehl: Trans. AIMME, 1939, vol. 135, pp. 416–58.

    Google Scholar 

  24. E. Scheil: Archiv Eisenhuttenwes, 1935, vol. 8, pp. 565–67. https://doi.org/10.1002/srin.193500186.

    Article  CAS  Google Scholar 

  25. J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: eds. J. S. Kirkaldy and D. V. Doane, (Warrendale, PA: AIME), 1978, 82.

  26. N. Saunders, Z. Guo, X. Li, A.P. Miodownika, and J.P. Schille: JMatPro Software Literature, 2004, pp. 1–12.

  27. M.V. Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 661–72.

    Article  CAS  Google Scholar 

  28. A.A. Gorni: Steel forming and heat-treating Handbook, 2014, pp. 1–46.

  29. H.S. Yang and H.K.D.H. Bhadeshia: Scr. Mater., 2009, vol. 60, pp. 493–95. https://doi.org/10.1016/j.scriptamat.2008.11.043.

    Article  CAS  Google Scholar 

  30. P. Schulze, E. Schmidl, and T. Lampke: WOMag, 2014, vol. 3.

  31. B.A. Behrens, A. Chugreev, and C. Kock: 5th Int. Conf., IOP Conf. Series: Mater. Sci. Eng., 2019, vol. 461, 012040. https://doi.org/10.1088/1757-899X/461/1/012040

  32. F. Nurnberger, O. Grydin, M. Schaper, F.W. Bach, B. Koczurkiewicz, and A. Milenin: Steel Res. Int., 2010, vol. 81(3), pp. 224–33. https://doi.org/10.1002/srin.200900132.

    Article  CAS  Google Scholar 

  33. N. Isasti, D.J. Badiola, M.L. Taheri, and P. Uranga: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3552–63. https://doi.org/10.1007/s11661-013-1738-3.

    Article  CAS  Google Scholar 

  34. Z. Babasafari, A.V. Pan, F. Pahlevani, R. Hossain, V. Sahajwalla, M. Toit, and R. Dippenaar: J. Mater. Res. Technol., 2020, vol. 9(6), pp. 15286–297. https://doi.org/10.1016/j.jmrt.2020.10.071.

    Article  CAS  Google Scholar 

  35. M. Nikravesh, M. Naderi, and G.H. Akbari: Mater. Sci. Eng. A, 2012, vol. 540, pp. 24–29. https://doi.org/10.1016/j.msea.2012.01.018.

    Article  CAS  Google Scholar 

  36. S.S. Souza, P.S. Moreira, and G.L. Faria: Mater. Res., 2020, vol. 23(1), e20190570, pp. 1–9. https://doi.org/10.1590/1980-5373-MR-2019-0570.

  37. C.G. de Andres, F.G. Caballero, C. Capdevila, and L.F. Alvarez: Mater. Charact., 2002, vol. 48, pp. 101–11. https://doi.org/10.1016/S1044-5803(02)00259-0.

    Article  Google Scholar 

  38. J.C. Zhao and M.R. Notis: Mater. Sci. Eng. R, 1995, vol. 15, pp. 135–208. https://doi.org/10.1016/0927-796X(95)00183-2.

    Article  Google Scholar 

  39. F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, and J. Li: Mater. Sci. Eng. A, 2018, vol. 723, pp. 247–58. https://doi.org/10.1016/j.msea.2018.03.061.

    Article  CAS  Google Scholar 

  40. B.D. Cullity, and S.R. Stock: Elements of X-ray diffraction (3rd ed.), 2001, pp. 363-383.

  41. Analytical methods for materials, Precise lattice parameter determination. https://weavergroup.ua.edu/uploads/4/8/9/0/48901279/lab3_-_ precise_lattice_parameter_determination.pdf

  42. A.J. DeArdo: Ironmak. Steelmak., 2001, vol. 28(2), pp. 138–44. https://doi.org/10.1179/030192301678055.

    Article  CAS  Google Scholar 

  43. H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2010, vol. 466, pp. 3–18. https://doi.org/10.1098/rspa.2009.0407.

    Article  CAS  Google Scholar 

  44. H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1999, vol. 15, pp. 22–29. https://doi.org/10.1179/026708399773002773.

    Article  CAS  Google Scholar 

  45. A.N. Lopez, J. Hidalgo, J. Sietsma, and M.J. Santofimia: Mater. Sci. Eng. A, 2018, vol. 735, pp. 343–53. https://doi.org/10.1016/j.msea.2018.08.047.

    Article  CAS  Google Scholar 

  46. L. Zhao, L. Qian, Q. Zhou, D. Li, T. Wang, Z. Jia, F. Zhang, and J. Meng: Mater. Des., 2019, vol. 183, p. 108123. https://doi.org/10.1016/j.matdes.2019.108123.

    Article  CAS  Google Scholar 

  47. J. Tian, G. Xu, M. Zhou, and H. Hu: Steel Res. Int., 2018, vol. 89, p. 1700469. https://doi.org/10.1002/srin.201700469.

    Article  CAS  Google Scholar 

  48. L. Qian, Z. Li, T. Wang, D. Li, F. Zhang, and J. Meng: J. Mater. Sci. Technol., 2022, vol. 96, pp. 69–84. https://doi.org/10.1016/j.jmst.2021.05.002.

    Article  CAS  Google Scholar 

  49. W.S. Li, H. Gao, Z. Li, H. Nakashima, S. Hata, and W.H. Tian: Int. J. Miner. Metall. Mat., 2016, vol. 23(3), pp. 303–13. https://doi.org/10.1007/s12613-016-1239-7.

    Article  CAS  Google Scholar 

  50. A.N. Lopez, J. Hidalgo, J. Sietsma, and M.J. Santofimia: Mater. Charact., 2017, vol. 128, pp. 248–56. https://doi.org/10.1016/j.matchar.2017.04.007.

    Article  CAS  Google Scholar 

  51. S. Pashangeh, M. Somani, and S.S.G. Banadkoukia: J. Mater. Res. Technol., 2020, vol. 9(3), pp. 3438–46. https://doi.org/10.1016/j.jmrt.2020.01.081.

    Article  CAS  Google Scholar 

  52. Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 710, pp. 181–91. https://doi.org/10.1016/j.msea.2017.10.104.

    Article  CAS  Google Scholar 

  53. Y.J. Li, D. Liu, D. Chen, J. Kang, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2019, vol. 753, pp. 197–207. https://doi.org/10.1016/j.msea.2019.03.043.

    Article  CAS  Google Scholar 

  54. G. Gao, H. Zhang, Z. Tan, W. Liu, and B. Bai: Mater. Sci. Eng. A, 2013, vol. 559, pp. 165–69. https://doi.org/10.1016/j.msea.2012.08.064.

    Article  CAS  Google Scholar 

  55. S. Ghosh, P. Kaikkonen, V. Javaheri, A. Kaijalainen, I. Miettunen, M. Somani, J. Komi, and S. Pallaspuro: J. Mater. Res. Technol., 2022, vol. 17, pp. 1390–407. https://doi.org/10.1016/j.jmrt.2022.01.073.

    Article  CAS  Google Scholar 

  56. P. Zhang, Y. Chen, W. **ao, D. **, and X. Zhao: Prog. Natl. Sci.: Mater. Int., 2016, vol. 26, pp. 169–72. https://doi.org/10.1016/j.pnsc.2016.03.004.

    Article  CAS  Google Scholar 

  57. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37. https://doi.org/10.1016/j.cossms.2004.09.003.

    Article  CAS  Google Scholar 

  58. J.G. Speer, F.C.R. Assunçao, D.K. Matlock, and D.V. Edmonds: Mater. Res., 2005, vol. 8(4), pp. 417–23. https://doi.org/10.1590/S1516-14392005000400010.

    Article  CAS  Google Scholar 

  59. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34. https://doi.org/10.1016/j.msea.2006.02.133.

    Article  CAS  Google Scholar 

  60. T. Gladman: The Physical Metallurgy of Microalloved Steels, 1997, ISBN 0 910716 81 2, pp. 81-135.

  61. J.G. Speer, A.L. Araujo, D.K. Matlock, and E. De Moor: Mater. Sci. Forum, 2016, vol. 879, pp. 1834–40. https://doi.org/10.4028/www.scientific.net/MSF.879.1834.

    Article  Google Scholar 

  62. X.D. Wang, W.Z. Xu, Z.H. Guo, L. Wang, and Y.H. Rong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3373–78. https://doi.org/10.1016/j.msea.2010.02.026.

    Article  CAS  Google Scholar 

  63. J. Zhang, H. Ding, R.D.K. Misra, and C. Wang: Mater. Sci. Eng. A, 2015, vol. 641, pp. 242–48. https://doi.org/10.1016/j.msea.2015.06.050.

    Article  CAS  Google Scholar 

  64. S. Qin, Y. Liu, Q. Hao, Y. Wang, N. Chen, X. Zuo, and Y. Rong: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 4047–55. https://doi.org/10.1007/s11661-015-3021-2.

    Article  CAS  Google Scholar 

  65. S. Barella, M. Belfi, A. Gruttadauria, C. Liu, and Y. Peng: Metall. Mater. Trans. A, 2024, vol. 55A, pp. 513–22. https://doi.org/10.1007/s11661-023-07262-y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, I., Saha, R., Mahato, B. et al. Effect of Quenching and Partitioning on Microstructure and Mechanical Properties of High-Carbon Nb Microalloyed Steel. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07431-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07431-7

Navigation