Log in

Solidification Microstructure Reconstruction and Its Effects on Phase Transformation, Grain Boundary Transformation Mechanism, and Mechanical Properties of TC4 Alloy Welded Joint

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the solidification microstructure, reconstructed by the method of parent grain crystallographic reconstruction (PGCR), was studied for TC4 titanium alloy welded joint. The investigation focused on the impact of the solidification microstructure on the phase transformation process and grain boundary transformation mechanism in various regions of the welded joint. Additionally, the study explored the influence of phase transformation and grain boundary transformation on the mechanical properties of the joint. The results showed that the microstructure of fusion zone (FZ) and heat affected zone (HAZ) in the joint was transformed from equiaxed primary α and α + β lamellae to complete primary β grains, and then α' phase was precipitated in the primary β grain, and the residual phases were transformed into secondary α phases. The transformation process from β to α' was controlled by the Burgers orientation relationship (OR), mainly from the primary β of {101}{111} crystal plane groups to the α' and α phases of {1000} {11-20} crystal plane groups. The sizes of primary β and α1' phase were both increased with the rise in heat absorption in different regions, and the tensile strength of the joint was at a considerable level than that of the Base, reaching 100.87 pct. Due to the increase of dislocation density and the quantities of high angle grain boundary, the impact energy of the joint reached 31.19 J, which was larger than the 18.51 J of the Base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Q. Zhao, Q. Sun, S. **n, Y. Chen, Wu. Cong, H. Wang, Xu. Jianwei, M. Wan, W. Zeng, and Y. Zhao: Mater. Sci. Eng. A, 2022, vol. 845, p. 143260. https://doi.org/10.1016/j.msea.2022.143260.

    Article  CAS  Google Scholar 

  2. X.-L. Gao, L.-J. Zhang, J. Liu, and J.-X. Zhang: Mater. Sci. Eng. A, 2013, vol. 559, pp. 14–21. https://doi.org/10.1016/j.msea.2012.06.016.

    Article  CAS  Google Scholar 

  3. Bu. Hengchang, Q. Gao, Y. Li, F. Wang, and X. Zhan: Met. Mater. Int., 2021, vol. 27, pp. 3449–61. https://doi.org/10.1007/s12540-020-00683-z.

    Article  CAS  Google Scholar 

  4. N. Li, T. Wang, S. Jiang, and L. Zhang: Mater Charact, 2021, vol. 178, p. 111275. https://doi.org/10.1016/j.matchar.2021.111275.

    Article  CAS  Google Scholar 

  5. Lu. Wei, X. Li, Y. Lei, and Y. Shi: Mater. Sci. Eng. A, 2012, vol. 540, pp. 135–41. https://doi.org/10.1016/j.msea.2012.01.117.

    Article  CAS  Google Scholar 

  6. S. Lathabai, B.L. Jarvis, and K.J. Barton: Mater. Sci. Eng. A, 2001, vol. 299, pp. 81–93. https://doi.org/10.1016/S0921-5093(00)01408-8.

    Article  Google Scholar 

  7. Ou. Peng, Z. Cao, M. Hai, J. Qiang, Y. Wang, J. Wang, G. Zheng, and J. Zhang: Mater Charact, 2023, vol. 196, p. 112644. https://doi.org/10.1016/j.matchar.2023.112644.

    Article  CAS  Google Scholar 

  8. S. Cui, Y. Shi, T. Zhu, and W. Liu: J. Manuf. Process., 2019, vol. 37, pp. 418–24. https://doi.org/10.1016/j.jmapro.2018.12.022.

    Article  Google Scholar 

  9. L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert: Acta Mater., 2012, vol. 60, pp. 4551–62. https://doi.org/10.1016/j.actamat.2012.04.034.

    Article  ADS  CAS  Google Scholar 

  10. M. Abbasi, M. Dehghani, H.-U. Guim, and D.-I. Kim: Acta Mater., 2016, vol. 117, pp. 262–69. https://doi.org/10.1016/j.actamat.2016.06.064.

    Article  ADS  CAS  Google Scholar 

  11. N. Stanford and P.S. Bate: Acta Mater., 2004, vol. 52, pp. 5215–24. https://doi.org/10.1016/j.actamat.2004.07.034.

    Article  ADS  CAS  Google Scholar 

  12. R. Hielscher, T. Nyyssönen, F. Niessen, and A.A. Gazder: Materialia, 2022, vol. 22, p. 101399. https://doi.org/10.1016/j.mtla.2022.101399.

    Article  CAS  Google Scholar 

  13. H. Beladi, Qi. Chao, and G.S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478–89. https://doi.org/10.1016/j.actamat.2014.06.064.

    Article  CAS  Google Scholar 

  14. D. Sun, Z. Zhou, K. Zhang, X. Yang, X. Liu, Z. Guo, and Gu. Jianfeng: Mater. Des., 2023, vol. 227, p. 111692. https://doi.org/10.1016/j.matdes.2023.111692.

    Article  CAS  Google Scholar 

  15. Lu. Yang, S. Ramachandran, A. Bagasol, Q. Guan, W. Wang, D.J. Browne, D. Dowling, and W. Mirihanage: Scripta Mater., 2023, vol. 231, p. 115430. https://doi.org/10.1016/j.scriptamat.2023.115430.

    Article  CAS  Google Scholar 

  16. M. Esmaily, S.N. Mortazavi, P. Todehfalah, and M. Rashidi: Mater. Des., 2013, vol. 47, pp. 143–50. https://doi.org/10.1016/j.matdes.2012.12.024.

    Article  CAS  Google Scholar 

  17. G.J. Tchein, D. Jacquin, D. Coupard, E. Lacoste, and F.G. Mata: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2113–23. https://doi.org/10.1007/s11661-018-4568-5.

    Article  ADS  CAS  Google Scholar 

  18. L. Wang, C. Shen, Y. Zhang, F. Li, W. Zhou, J. **n, Y. Ding, and X. Hua: Mater. Sci. Eng. A, 2022, vol. 856, p. 144028. https://doi.org/10.1016/j.msea.2022.144028.

    Article  CAS  Google Scholar 

  19. T. Lin, L. Zhou, Xu. **wei, Y. Guo, H. Luo, Z. Cai, H. Wang, J. Li, Y. Liang, and Yu. Liang: Mater. Des., 2023, vol. 230, p. 111972. https://doi.org/10.1016/j.matdes.2023.111972.

    Article  CAS  Google Scholar 

  20. J.-D. Kim: Mater Charact, 2021, vol. 178, p. 111300. https://doi.org/10.1016/j.matchar.2021.111300.

    Article  CAS  Google Scholar 

  21. B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck: J. Alloys Compd., 2012, vol. 541, pp. 177–85. https://doi.org/10.1016/j.jallcom.2012.07.022.

    Article  CAS  Google Scholar 

  22. S.D. Meshram and T. Mohandas: Mater. Des., 2010, vol. 31, pp. 2245–52. https://doi.org/10.1016/j.matdes.2009.10.012.

    Article  CAS  Google Scholar 

  23. X. Li, Q. Zhu, S. Liu, C. Wang, F. Li, F. Chen, L. Feng, H. Wang, J. Cheng, and H. Chang: Mater. Sci. Technol., 2022, vol. 38, pp. 1543–53. https://doi.org/10.1080/02670836.2022.2090668.

    Article  ADS  CAS  Google Scholar 

  24. F.R. Kaschel, R.K. Vijayaraghavan, A. Shmeliov, E.K. McCarthy, M. Canavan, P.J. McNally, D.P. Dowling, V. Nicolosi, and M. Celikin: Acta Mater., 2020, vol. 188, pp. 720–32. https://doi.org/10.1016/j.actamat.2020.02.056.

    Article  ADS  CAS  Google Scholar 

  25. Lu. Yu, R. Turner, J. Brooks, and H. Basoalto: J. Mater. Sci. Technol., 2022, vol. 113, pp. 117–27. https://doi.org/10.1016/j.jmst.2021.10.023.

    Article  CAS  Google Scholar 

  26. H.M. Hamza, K.M. Deen, and W. Haider: Mater. Sci. Eng. C, 2020, vol. 113, p. 110980. https://doi.org/10.1016/j.msec.2020.110980.

    Article  CAS  Google Scholar 

  27. M. Shahsavari: J. Appl. Electrochem., 2022, vol. 52, pp. 1003–19. https://doi.org/10.1007/s10800-022-01683-0.

    Article  CAS  Google Scholar 

  28. J. Yang, Yu. Hanchen, J. Yin, M. Gao, Z. Wang, and X. Zeng: Mater. Des., 2016, vol. 108, pp. 308–18. https://doi.org/10.1016/j.matdes.2016.06.117.

    Article  CAS  Google Scholar 

  29. N. Yumak and K. Aslantaş: J. Market. Res., 2020, vol. 9, pp. 15360–80. https://doi.org/10.1016/j.jmrt.2020.10.088.

    Article  CAS  Google Scholar 

  30. S. Pal, G. Lojen, V. Kokol, and I. Drstvensek: J. Manuf. Process., 2018, vol. 35, pp. 538–46. https://doi.org/10.1016/j.jmapro.2018.09.012.

    Article  Google Scholar 

  31. X. Tan and Y. Kok: Acta Mater., 2015, vol. 97, pp. 1–6. https://doi.org/10.1016/j.actamat.2015.06.036.

    Article  ADS  CAS  Google Scholar 

  32. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86. https://doi.org/10.1016/S0031-8914(34)80244-3.

    Article  ADS  CAS  Google Scholar 

  33. S. Mironov, Y. Zhang, Y.S. Sato, and H. Kokawa: Scripta Mater., 2008, vol. 59, pp. 511–14. https://doi.org/10.1016/j.scriptamat.2008.04.038.

    Article  CAS  Google Scholar 

  34. A.I. Saville, B. Ellyson, A. Eres-Castellanos, J.T. Benzing, and A.J. Clarke: Scripta Mater., 2023, vol. 226, p. 115248. https://doi.org/10.1016/j.scriptamat.2022.115248.

    Article  CAS  Google Scholar 

  35. A. Bardelcik, C.P. Salisbury, S. Winkler, M.A. Wells, and M.J. Worswick: Int. J. Impact Eng, 2010, vol. 37, pp. 694–702. https://doi.org/10.1016/j.ijimpeng.2009.05.009.

    Article  Google Scholar 

  36. T. Ahmed and H.J. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206–11. https://doi.org/10.1016/S0921-5093(97)00802-2.

    Article  Google Scholar 

  37. H. Sun, Y. Liang, G. Li, X. Zhang, S. Wang, and C. Huang: J. Alloys Compd., 2021, vol. 868, p. 159155. https://doi.org/10.1016/j.jallcom.2021.159155.

    Article  CAS  Google Scholar 

  38. P. Nath, L. Marandi, and I. Sen: J. Alloys Compd., 2022, vol. 927, p. 167039. https://doi.org/10.1016/j.jallcom.2022.167039.

    Article  CAS  Google Scholar 

  39. J. Šmilauerová, P. Harcuba, J. Stráská, J. Stráský, M. Janeček, J. Pospíšil, J. Ilavský, and V. Holý: Mater Charact, 2023, vol. 196, p. 112615. https://doi.org/10.1016/j.matchar.2022.112615.

    Article  CAS  Google Scholar 

  40. J. Zhang, Xu. Dong, X. Wang, J. Zhao, H. He, and Q. Yang: Measurement, 2023, vol. 211, p. 112670. https://doi.org/10.1016/j.measurement.2023.112670.

    Article  Google Scholar 

  41. S. Mironov, Y.S. Sato, H. Kokawa, S. Hirano, A.L. Pilchak, and S.L. Semiatin: Metals, 2020, https://doi.org/10.3390/met10070976.

    Article  Google Scholar 

  42. P. Kwasniak, H. Garbacz, and K.J. Kurzydlowski: Acta Mater., 2016, vol. 102, pp. 304–14. https://doi.org/10.1016/j.actamat.2015.09.041.

    Article  ADS  CAS  Google Scholar 

  43. G.M. Ter Haar and T.H. Becker: Materials, 2018, https://doi.org/10.3390/ma11010146.

    Article  PubMed  PubMed Central  Google Scholar 

  44. S. Wroński, J. Tarasiuk, B. Bacroix, A. Baczmański, and C. Braham: Materials, 2012, vol. 73, pp. 52–60. https://doi.org/10.1016/j.matchar.2012.07.016.

    Article  CAS  Google Scholar 

  45. S.-W. Cui, Y.-H. Shi, and C.-S. Zhang: Trans. Nonferrous Met. Soc. China, 2021, vol. 31, pp. 416–25. https://doi.org/10.1016/S1003-6326(21)65506-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Jiangsu Province Science and Technology Achievement Transformation Fund (BA2020068), Zhejiang Key Project of Research and Development Plan (2021C01085), Key Technology Research Project of Beilun District Ningbo City (2021BLG005), and National Natural Science Foundation of China (52005320).

Author information

Authors and Affiliations

Authors

Contributions

**hong Du contributed toward conceptualization, investigation, data curation, and writing– original draft. Hongbing Liu contributed toward funding acquisition, writing – review & editing, and supervision. Fei Wang contributed toward writing -review & editing, supervision, and conceptualization. Wen Bao contributed toward writing – review & editing. Huan Li contributed toward writing -review & editing, supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Hongbing Liu or Fei Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Liu, H., Wang, F. et al. Solidification Microstructure Reconstruction and Its Effects on Phase Transformation, Grain Boundary Transformation Mechanism, and Mechanical Properties of TC4 Alloy Welded Joint. Metall Mater Trans A 55, 1193–1206 (2024). https://doi.org/10.1007/s11661-024-07317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07317-8

Navigation