Log in

Thermodynamics and Kinetics of Refractory Multi-principal Element Alloys: An Experimental and Modeling Comparison

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

The search for structural alloys capable of ultrahigh temperature performance has led to the exploration of refractory multi-principal element alloys (RMPEAs). In this work, experimental results for solidification segregation and homogenization of two RMPEAs, NbTaTiW and MoNbTaTi, are compared to simulations using the Scheil and DICTRA modules in Thermo-Calc®. Scheil calculations accurately predict the observed solidification segregation, while DICTRA predicts general trends and can provide a minimum time to achieve homogenization at a given temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

References

  1. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.-P. Couzinie: J. Mater. Res., 2018, vol. 33, p. 3092.

    Article  CAS  Google Scholar 

  2. M.-H. Tsai and J.-W. Yeh: Mater. Res. Lett., 2014, vol. 2, p. 107.

    Article  Google Scholar 

  3. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, and Y. Liu: J. Alloys Compd., 2018, vol. 760, p. 15.

    Article  CAS  Google Scholar 

  4. O.N. Senkov, C. Zhang, A.L. Pilchak, E.J. Payton, C. Woodward, and F. Zhang: J. Alloys Compd., 2019, vol. 783, p. 729.

    Article  CAS  Google Scholar 

  5. S. Praveen and H.S. Kim: Adv. Eng. Mater., 2017, vol. 20, p. 1700645.

    Article  Google Scholar 

  6. J.-P. Couzinié, O.N. Senkov, D.B. Miracle, and G. Dirras: Data Brief, 2018, vol. 21, p. 1622.

    Article  Google Scholar 

  7. A.B. Melnick and V.K. Soolshenko: J. Alloys Compd., 2017, vol. 694, p. 223.

    Article  CAS  Google Scholar 

  8. F.G. Coury, M. Kaufman, and A.J. Clarke: Acta Mater., 2019, vol. 175, p. 66.

    Article  CAS  Google Scholar 

  9. F. Maresca and W.A. Curtin: Acta Mater., 2020, vol. 182, p. 235.

    Article  CAS  Google Scholar 

  10. F.G. Coury, T. Butler, K. Chaput, A. Saville, J. Copley, J. Foltz, P. Mason, K. Clarke, M. Kaufman, and A. Clarke: Mater. Des., 2018, vol. 155, p. 244.

    Article  CAS  Google Scholar 

  11. U.E. Klotz, C. Solenthaler, and P.J. Uggowitzer: Mater. Sci. Eng. A, 2008, vol. 476, p. 186.

    Article  Google Scholar 

  12. T. Yamashita, K. Okuda, and T. Obara: J. Phase Equilib., 1999, vol. 20, p. 231.

    Article  CAS  Google Scholar 

  13. V. Knežević, J. Balun, G. Sauthoff, G. Inden, and A. Schneider: Mater. Sci. Eng. A, 2008, vol. 477, p. 334.

    Article  Google Scholar 

  14. A.W. Zhu, B.M. Gable, G.J. Shiflet, and E.A. Starke: Adv. Eng. Mater., 2002, vol. 4, p. 839.

    Article  CAS  Google Scholar 

  15. H.-L. Chen, Q. Chen, and A. Engström: CALPHAD, 2018, vol. 62, p. 154.

    Article  CAS  Google Scholar 

  16. P.D. Jablonski and J.A. Hawk: J. Mater. Eng. Perform., 2017, vol. 26, p. 4.

    Article  CAS  Google Scholar 

  17. P.L. Conway, T.P.C. Klaver, J. Steggo, and E. Ghassemali: Mater. Sci. Eng. A, 2022, vol. 830, 142297.

    Article  CAS  Google Scholar 

  18. M. Asadikiya, Y. Zhang, L. Wang, D. Apelian, and Y. Zhong: J. Alloys Compd., 2022, vol. 891, 161836.

    Article  CAS  Google Scholar 

  19. G.H. Gulliver: J. Inst. Met., 1915, vol. 13, p. 263.

    Google Scholar 

  20. E. Scheil: Int. J. Mater. Res., 1942, vol. 34, p. 70.

    Article  Google Scholar 

  21. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström: J. Phase Equilib., 2000, vol. 21, p. 269.

    Article  CAS  Google Scholar 

  22. F.G. Coury: Solid Solution Strengthening Mechanisms in High Entropy Alloys, Dissertation, Colorado School of Mines, 2018.

  23. H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, and Y. Zhang: Mater. Sci. Eng. A, 2016, vol. 674, p. 203.

    Article  CAS  Google Scholar 

  24. H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, and H. Zhou: Entropy, 2016, vol. 18, p. 189.

    Article  Google Scholar 

  25. J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, and M. Danielewski: J. Alloys Compd., 2019, vol. 783, p. 193.

    Article  Google Scholar 

  26. W. Kucza, J. Dąbrowa, G. Cieślak, K. Berent, T. Kulik, and M. Danielewski: J. Alloys Compd., 2018, vol. 731, p. 920.

    Article  CAS  Google Scholar 

  27. H. Mehrer, N. Stolica, and N.A. Stolwijk: Landolt-Börnstein—Group III Condensed Matter 64, n.d.

  28. W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book (Elsevier, 2003).

  29. D. A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys (Revised Reprint), CRC Press, Boca Raton, 2009.

Download references

Acknowledgments

This work was funded by the Department of Energy’s Kansas City National Security Campus which is operated and managed by Honeywell Federal Manufacturing Technologies, LLC under contract number DE-NA0002839. The electron microscopy and the contributions of author F.G. Coury were separately supported by the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), a National Science Foundation Industry/University Cooperative Research Center (I/UCRC) [Award No. 1624836] at the Colorado School of Mines and the Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil (CNPq) [Grant No. 424645/2018-1]. We also thank ATI for producing the experimental alloys studied here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Peterson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puerling, R., Miklas, A., Coury, F.G. et al. Thermodynamics and Kinetics of Refractory Multi-principal Element Alloys: An Experimental and Modeling Comparison. Metall Mater Trans A 54, 1070–1076 (2023). https://doi.org/10.1007/s11661-023-06980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06980-7

Navigation