Log in

Structure Optimization of Die for 6000-Series Aluminum Alloy Extrusion from Numerical Analysis, Stress Measurement, and Microstructure Observation Perspective

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The industrial use of 6000-series Al alloys is increasing owing to their high formability and recyclability. Structural control of these alloys can be achieved based on the stress applied during extrusion to improve their mechanical properties and recyclability. In this study, three dies were fabricated with different mold lengths and taper angles. The results of finite element analysis (FEA) showed that the die with a short and straight mold had a smaller distribution of von Mises stresses (σvM) than other dies, measuring over 40 MPa around the section in contact with the mold-forming area. The FEA results of this extruded profile represented relative trends of the measured residual stress distribution effectively; i.e., the depth corresponding to the maximum σvM decreased with the processing stress in the dies. This profile showed improved bendability relative to the other dies owing to its thinner 〈110〉//extrusion direction surface layer and finer crystal grains. Improvements in mechanical properties based on the structural state could be predicted in advance using FEA owing to the correlation between the stress distributions simulated using FEA and the measured structural and stress distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37–49. https://doi.org/10.1016/S0921-5093(99)00653-X.

    Article  Google Scholar 

  2. J. Hirsch: Mater. Trans., 2011, vol. 52, pp. 818–24. https://doi.org/10.2320/matertrans.L-MZ201132.

    Article  CAS  Google Scholar 

  3. Y. Liu, Y.X. Lai, Z.Q. Chen, S.L. Chen, P. Gao, and J.H. Chen: J. Alloys Compd., 2021, vol. 885, p. 160942. https://doi.org/10.1016/j.jallcom.2021.160942.

    Article  CAS  Google Scholar 

  4. G. Mao, G. Tong, W. Gao, S. Liu, and L. Zhong: Mater. Lett., 2021, vol. 302, p. 130428. https://doi.org/10.1016/j.matlet.2021.130428.

    Article  CAS  Google Scholar 

  5. J. Nakamura, K. Matsuda, T. Kawabata, T. Sato, Y. Nakamura, and S. Ikeno: Mater. Trans., 2010, vol. 51, pp. 310–16. https://doi.org/10.2320/matertrans.MC200911.

    Article  CAS  Google Scholar 

  6. Y. Koshino, M. Kozuka, S. Hirosawa, and Y. Aruga: J. Alloys Compd., 2015, vol. 622, pp. 765–70. https://doi.org/10.1016/j.jallcom.2014.10.199.

    Article  CAS  Google Scholar 

  7. E.A. Mørtsell, C.D. Marioara, S.J. Andersen, I.G. Ringdalen, J. Friis, S. Wenner, J. Røyset, O. Reiso, and R. Holmestad: J. Alloys Compd., 2017, vol. 699, pp. 235–42. https://doi.org/10.1016/j.jallcom.2016.12.273.

    Article  CAS  Google Scholar 

  8. T. Watari, K. Nansai, and K. Nakajima: Resour. Conserv. Recycl., 2021, vol. 164, p. 105107. https://doi.org/10.1016/j.resconrec.2020.105107.

    Article  CAS  Google Scholar 

  9. K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2010, vol. 44, pp. 5594–5600. https://doi.org/10.1021/es9038769.

    Article  CAS  Google Scholar 

  10. T. Hiraki and T. Nagasaka: J. Mater. Cycles Waste Manag., 2015, vol. 17, pp. 566–73. https://doi.org/10.1007/s10163-014-0283-5.

    Article  CAS  Google Scholar 

  11. S. Wronski and B. Bacroix: Acta Mater., 2014, vol. 76, pp. 404–12. https://doi.org/10.1016/j.actamat.2014.05.034.

    Article  CAS  Google Scholar 

  12. H. Utsunomiya, T. Ueno, and T. Sakai: Scr. Mater., 2007, vol. 57, pp. 1109–12. https://doi.org/10.1016/j.scriptamat.2007.08.024.

    Article  CAS  Google Scholar 

  13. T. Obata, Y. Tang, H. Iwaoka, S. Hirosawa, K. Mouri, and M. Shimoda: Keikinzoku/J. Jpn. Inst. Light Met., 2018, vol. 68, pp. 65–72. https://doi.org/10.2464/jilm.68.65.

    Article  CAS  Google Scholar 

  14. J. Huot: Appl. Sci. Technol., 2016, pp. 19–26. https://doi.org/10.1007/978-3-319-35107-0_5.

  15. K. Zhang, K. Marthinsen, B. Holmedal, T. Aukrust, and A. Segatori: Mater. Sci. Eng. A, 2018, vol. 722, pp. 20–29. https://doi.org/10.1016/j.msea.2018.02.081.

    Article  CAS  Google Scholar 

  16. H. Inoue: Keikinzoku/J. Jpn. Inst. Light Met., 2002, vol. 52, pp. 524–29. https://doi.org/10.2464/jilm.52.524.

    Article  CAS  Google Scholar 

  17. K.V. Gow and R.W. Cahn: Acta Metall., 1953, vol. 1, pp. 238–41. https://doi.org/10.1016/0001-6160(53)90066-2.

    Article  Google Scholar 

  18. S. Kaneko, K. Murakami, and T. Sakai: Mater. Sci. Eng. A, 2009, vol. 500, pp. 8–15. https://doi.org/10.1016/j.msea.2008.09.057.

    Article  CAS  Google Scholar 

  19. S. Oda and S.-I. Tanaka: IOP Conf. Ser., 2021, vol. 1121, p. 012042. https://doi.org/10.1088/1757-899x/1121/1/012042.

    Article  CAS  Google Scholar 

  20. S. Oda and S.-I. Tanaka: Mater. Sci. Eng. A, 2022, vol. 829, p. 142167. https://doi.org/10.1016/j.msea.2021.142167.

    Article  CAS  Google Scholar 

  21. S. Oda and S.-I. Tanaka: Mater. Sci. Eng. A, 2022, vol. 834, p. 142630. https://doi.org/10.1016/j.msea.2022.142630.

    Article  CAS  Google Scholar 

  22. B. Reggiani, A. Segatori, L. Donati, and L. Tomesani: Int. J. Adv. Manuf. Technol., 2013, vol. 69, pp. 1855–72. https://doi.org/10.1007/s00170-013-5143-2.

    Article  Google Scholar 

  23. C.M. Sellars and W.J.M. Tegart: Int. Metall. Rev., 1972, vol. 17, pp. 1–24. https://doi.org/10.1179/imtlr.1972.17.1.1.

    Article  CAS  Google Scholar 

  24. S. Taira and K. Tanaka: Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 411–18. https://doi.org/10.2355/isi**ternational1966.19.411.

    Article  CAS  Google Scholar 

  25. T. Sasaki, Y. Hirose, K. Sasaki, and Yasukawa: Adv. X-Ray Anal., 1997, vol. 40. https://www.icdd.com/axa-login/?article=9464d39308f2c4.

  26. T. Sasaki and Y. Hirose: J. Soc. Mater. Sci. Jpn., 1995, vol. 44, pp. 1138–43. https://doi.org/10.2472/jsms.44.1138.

    Article  Google Scholar 

  27. S.-I. Tanaka: Bull. Jpn. Inst. Met., 1990, vol. 29, pp. 924–30. https://doi.org/10.2320/materia1962.29.924.

    Article  Google Scholar 

  28. S.-I. Tanaka and Y. Takahashi: ISIJ Int., 1990, vol. 30, pp. 1086–91. https://doi.org/10.2355/isi**ternational.30.1086.

    Article  CAS  Google Scholar 

  29. M. Araki and K. Matsuda: Mater. Trans., 2020, vol. 61, pp. 104–10. https://doi.org/10.2320/matertrans.MT-M2019226.

    Article  CAS  Google Scholar 

  30. M. Araki, K. Matsuda, S. Lee, T. Tsuchiya, and S. Ikeno: Keikinzoku/J. Jpn. Inst. Light Met., 2019, vol. 69, pp. 327–31. https://doi.org/10.2464/jilm.69.327.

    Article  CAS  Google Scholar 

  31. K. Ihara and T. Shikama: Proceedings of the 12th International Conference on Aluminium Alloys, 2012, pp. 2012–17. http://www.icaa-conference.net/ICAA12/pdf/P073.pdf.

  32. H. Takeda, A. Hibino, and K. Takata: Mater. Trans., 2010, vol. 51, pp. 614–19. https://doi.org/10.2320/matertrans.L-MG200951.

    Article  CAS  Google Scholar 

  33. S. Ikawa, M. Asano, M. Kuroda, and K. Yoshida: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4050–54. https://doi.org/10.1016/j.msea.2011.01.048.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Assistant Professor Funazuka (Toyama University) for facilitating experiments with the 200-ton extrusion device. We would also like to thank Daichi Terada and Yasuaki Tanaka (YKK Corp. Simulation Group, Technology and Innovation Center) for facilitating FEA using the HyperXtrude software.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Oda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, S., Tanaka, SI. Structure Optimization of Die for 6000-Series Aluminum Alloy Extrusion from Numerical Analysis, Stress Measurement, and Microstructure Observation Perspective. Metall Mater Trans A 53, 4509–4518 (2022). https://doi.org/10.1007/s11661-022-06851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06851-7

Navigation