Log in

Effect of Ni Content on Solidification Behavior and Hot-Tearing Susceptibility of Co–Ni–Al–W-Based Superalloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solidification behavior and hot-tearing susceptibility of superalloys are key factors in alloy-casting process performance and product quality. In this paper, the effect of Ni content on the solidification behavior and hot-tearing susceptibility of the novel Co-based superalloy Co–xNi–11Al–4W–5Cr–1Ta–4Ti (x = 10, 20, 30, 40, at. pct) was investigated. The results indicated that with increasing content of Ni, the degree of W and Ti segregation increased, while the degree of Ta segregation decreased. With increasing Ni content, the volume fraction and precipitation temperature of the β/γ′ eutectic gradually decrease, and the concentrations of Ti and Al in the residual liquid phase of the alloy gradually increase. Therefore, the solidification rate of the alloy in the hot-tearing sensitive zone decreases, and the hot-tearing susceptibility of the alloy gradually increases. The casting processing properties of the alloy also decrease. These results could offer an experimental reference for the Ni content design of Co–Ni–Al–W-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Coutsouradis, A. Davin, and M. Lamberigts: Mater. Sci. Eng., 1987, vol. 88, pp. 11–19.

    Article  CAS  Google Scholar 

  2. J. Sato, T. Omori, K. Oikawa, K.I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.

    Article  CAS  Google Scholar 

  3. F. Xue, H.J. Zhou, X.F. Ding, M.L. Wang, and Q. Feng: Mater. Lett., 2013, vol. 112, pp. 215–18.

    Article  CAS  Google Scholar 

  4. L. Shi, J.J. Yu, C.Y. Cui, and X.F. Sun: Mater. Sci. Eng. A, 2015, vol. 620, pp. 36–43.

    Article  CAS  Google Scholar 

  5. P. Pandey, S. Mukhopadhyay, C. Srivastava, S.K. Makineni, and K. Chattopadhyay: Mater. Sci. Eng. A, 2020, vol. 790, p. 139578.

    Article  CAS  Google Scholar 

  6. W. Li, L. Li, S. Antonov, and Q. Feng: J. Alloy. Compd., 2020, vol. 826, p. 154182.

    Article  CAS  Google Scholar 

  7. L. Shi, J.J. Yu, C.Y. Cui, and X.F. Sun: Mater. Sci. Eng. A, 2015, vol. 635, pp. 50–58.

    Article  CAS  Google Scholar 

  8. P.J. Bocchini, C.K. Sudbrack, R.D. Noebe, D.C. Dunand, and D.N. Seidman: Mater. Sci. Eng. A, 2017, vol. 682, pp. 260–69.

    Article  CAS  Google Scholar 

  9. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  10. J. Zhang, T. Huang, L. Liu, and H. Fu: Acta Metall. Sin., 2015, vol. 51, pp. 1163–78.

    CAS  Google Scholar 

  11. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: JOM, 2010, vol. 62, pp. 58–63.

    Article  CAS  Google Scholar 

  12. S.P. Murray, K.M. Pusch, A.T. Polonsky, C.J. Torbet, G.G.E. Seward, N. Zhou, S.A.J. Forsik, P. Nandwana, M.M. Kirka, R.R. Dehoff, W.E. Slye, and T.M. Pollock: Nat. Commun., 2020, vol. 11, pp. 1–1.

    Article  CAS  Google Scholar 

  13. D. Migas, P. Gradoń, T. Mikuszewski, and G. Moskal: J. Therm. Anal. Calorim., 2020, vol. 142, pp. 1739–47.

    Article  CAS  Google Scholar 

  14. S. Y. Wang, X. Y. Hou, Y. Cheng, L. Wang, Y. Sun, H. W. Zhang, Y. H. Yang, J. G. Li, and Y. Z. Zhou: Mater. Charact., 2022, pp. 111793.

  15. M.A.L. Phan, D. Fraser, S. Gulizia, and Z.W. Chen: Mater. Lett., 2018, vol. 228, pp. 242–45.

    Article  CAS  Google Scholar 

  16. J. Grodzki, N. Hartmann, R. Rettig, E. Affeldt, and R.F. Singe: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2914–26.

    Article  CAS  Google Scholar 

  17. Y.Z. Zhou, A. Volek, and R.F. Singer: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 651–56.

    Article  CAS  Google Scholar 

  18. J. Zhang: Scr. Mater., 2003, vol. 48, pp. 677–81.

    Article  CAS  Google Scholar 

  19. J. Zhang and R.F. Singer: Acta Mater., 2002, vol. 50, pp. 1869–79.

    Article  CAS  Google Scholar 

  20. C. Liu, K. Li, J. Shen, and L. Lou: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 405–09.

    Article  CAS  Google Scholar 

  21. S. Tin, T. M. Pollock, W. T. King: Superalloys 2000, pp. 201–10.

  22. J. Hong, D. Ma, J. Wang, F. Wang, A. Dong, B. Sun, and A. Bührig-Polaczek: J. Alloy. Compd., 2015, vol. 648, pp. 1076–82.

    Article  CAS  Google Scholar 

  23. X. Zhou, H. Fu, Y. Zhang, H. Xu, and J. **e: Adv. Eng. Mater., 2019, vol. 21, p. 1900641.

    Article  CAS  Google Scholar 

  24. G. Liu, L. Liu, X. Zhao, J. Zhang, and H. Fu: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2733–41.

    Article  CAS  Google Scholar 

  25. Q. Feng, L.J. Carroll, and T.M. Pollock: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1949–62.

    Article  CAS  Google Scholar 

  26. H.D. Brody and M.C. Flemings: Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 615–23.

    CAS  Google Scholar 

  27. Z. Shi, J. Dong, M. Zhang, and L. Zheng: J. Alloy. Compd., 2013, vol. 571, pp. 168–77.

    Article  CAS  Google Scholar 

  28. L. Zheng, C.Q. Gu, and Y.R. Zheng: Scr. Mater., 2004, vol. 50, pp. 435–39.

    Article  CAS  Google Scholar 

  29. T. M. Pollock, W. H. Murphy, E. H. Goldman, D. L. Uram, and J. S. Tu: Superalloys 1992, pp. 125–34.

  30. S.M. Copley, A.F. Giamei, S.M. Johnson, and M.F. Hornbecker: Metall. Trans., 1970, vol. 1, pp. 2193–204.

    Article  CAS  Google Scholar 

  31. H. Xu, Y.H. Zhang, H.D. Fu, F. Xue, X.Z. Zhou, and J.X. **e: J. Alloy. Compd., 2022, vol. 891, p. 161965.

    Article  CAS  Google Scholar 

  32. K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Metall. Trans., 2008, vol. 49, pp. 1474–79.

    CAS  Google Scholar 

  33. E.A. Lass: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2443–59.

    Article  CAS  Google Scholar 

  34. W.S. Pellini: Foundry, 1952, vol. 80, pp. 125–33.

    Google Scholar 

  35. H. Ding, H. Fu, Z. Liu, R. Chen, B. Liu, Z. Zhong, and D. Tang: Acta Metall. Sin., 1997, vol. 33, pp. 926–31.

    Google Scholar 

  36. L. Katgerman: JOM, 1982, vol. 34, pp. 46–49.

    Article  Google Scholar 

  37. C. Monroe and C. Beckermann: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 30–36.

    Article  CAS  Google Scholar 

  38. J.C. Borland: Weld. Met. Fabr., 1979, vol. 47, pp. 99–107.

    Google Scholar 

  39. T.W. Clyne and G.J. Davies: The British Foundryman, 1981, vol. 74, pp. 65–73.

    Google Scholar 

  40. S. Kou: Acta Mater., 2015, vol. 88, pp. 366–74.

    Article  CAS  Google Scholar 

  41. S. Kou: Transport Phenomena and Materials Processing, Wiley, Hoboken, 1996.

    Google Scholar 

  42. K. Liu and S. Kou: Sci. Technol. Weld. Joining, 2020, vol. 25, pp. 251–57.

    Article  CAS  Google Scholar 

  43. J. Liu and S. Kou: Acta Mater., 2017, vol. 125, pp. 513–23.

    Article  CAS  Google Scholar 

  44. J. Han, J. Wang, M. Zhang, and K. Niu: Materialia, 2019, vol. 5, p. 100203.

    Article  CAS  Google Scholar 

  45. J. Liu and S. Kou: Acta Mater., 2016, vol. 110, pp. 84–94.

    Article  CAS  Google Scholar 

  46. P. Rong, N. Wang, L. Wang, R.N. Yang, and W.J. Yao: J. Alloy. Compd., 2016, vol. 676, pp. 181–86.

    Article  CAS  Google Scholar 

  47. Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y.L. Gong, J.W.G. Clark, A.A.N. Németh, D.G. McCartney, and R.C. Reed: Acta Mater., 2021, vol. 202, pp. 417–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support of National Natural Science Foundation of China (Nos. 52022011, 52090041), National Major Science and Technology Projects of China (J2019-VI-0009-0123), and Science Center for Gas Turbine Project (P2021-A-IV-001-002).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhang, Y., Zhang, Y. et al. Effect of Ni Content on Solidification Behavior and Hot-Tearing Susceptibility of Co–Ni–Al–W-Based Superalloys. Metall Mater Trans A 53, 3465–3477 (2022). https://doi.org/10.1007/s11661-022-06762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06762-7

Navigation