Log in

New Nucleation Mechanism of the Liquid Droplet at the Solid–Solid Interface During Initial Thermal Stabilization Stage of Directional Solidification

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Different from the previous report that liquid droplets nucleated within the superheated solid phases during thermal stabilization, the nucleation of liquid droplets at the solid primary α-solid peritectic β interface was observed in a Sn–Ni peritectic alloy. Then, liquid migration by temperature gradient zone melting (TGZM) was observed. The nucleation interval of liquid droplets at the same nucleation site is determined to be 42 seconds by investigating liquid migration through a diffusion-controlled analytical model.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4
Fig. 5

References

  1. Y.H. Wu, J. Chang, L. Hu, S. Sha, X. Cai, S.S. Xu, B. Wei, Metall. Mater. Trans. A 51, 2975–2989 (2020)

    Article  CAS  Google Scholar 

  2. Y.H. Yang, R.R. Chen, J.J. Guo, H.S. Ding, Y.Q. Su, Inter. J. Heat Mass Trans. 122, 1128–1137 (2018)

    Article  CAS  Google Scholar 

  3. G. Kurtuldu, P. Jarry, M. Rappaz, Metall. Mater. Trans. A 51, 279–288 (2020)

    Article  CAS  Google Scholar 

  4. S.Y. Pan, Q.Y. Zhang, M.F. Zhu, M. Rettenmayr, Acta Mater. 86, 229–239 (2015)

    Article  CAS  Google Scholar 

  5. H.N. Thi, B. Drevet, J.M. Debierre, D. Camel, Y. Dabo, B. Billia. J. Cryst. Growth 253, 539–548 (2003)

    Google Scholar 

  6. D.M. Liu, Y.Q. Su, X.Z. Li, L.S. Luo, J.J. Guo, H.Z. Fu, J. Cryst. Growth 312, 3658–3664 (2010)

    Article  CAS  Google Scholar 

  7. Q.Y. Zhang, H. Fang, H. Xue, Q.Y. Tang, S.Y. Pan, M. Rettenmayr, M.F. Zhu, Scripta Mater. 151, 28–32 (2018)

    Article  CAS  Google Scholar 

  8. M. Rettenmayr, Inter. Mater. Rev. 54, 1–17 (2009)

    Article  CAS  Google Scholar 

  9. W.G. Pfann, Trans. AIME 203, 961–964 (1955)

    Google Scholar 

  10. D.P. Woodruff, A.J. Forty, Philos. Mag. 15, 985–993 (1967)

    Article  CAS  Google Scholar 

  11. J.D. Verhoeven, E.D. Gibson, J. Cryst. Growth 11, 29–38 (1971)

    Article  CAS  Google Scholar 

  12. J.D. Verhoeven, E.D. Gibson, J. Cryst. Growth 11, 39–49 (1971)

    Article  CAS  Google Scholar 

  13. D. Benielli, N. Bergeon, H. Jamgotchian, B. Billia, Ph. Voge, Phys. Rev. E 65, 051604-1-051604–10 (2002)

    Article  Google Scholar 

  14. H.W. Kerr, W. Kurz, Inter. Mater. Rev. 41, 129–164 (1996)

    Article  CAS  Google Scholar 

  15. P. Peng, J. Alloys Compds. 783, 156–163 (2019)

    Article  CAS  Google Scholar 

  16. C. Schmetterer, H. Flandorfer, W.K. Richter, U. Saeed, M. Kauffman, P. Roussel, H. Ipser, Intermetallics 15, 869–884 (2007)

    Article  CAS  Google Scholar 

  17. F.A. Nichols, W.W. Mullins, Trans. Metall. Soc. AIME 233, 1840–1848 (1965)

    CAS  Google Scholar 

  18. R.W. Cahn, Nature 323(23), 668–669 (1986)

    Article  Google Scholar 

  19. R.W. Cahn, Nature 334, 17–18 (1988)

    Article  Google Scholar 

  20. R.W. Cahn, Nature 273, 491–492 (1978)

    Article  Google Scholar 

  21. R.M.J. Cotterill, J.U. Madsen, Nature 299, 188 (1982)

    Article  CAS  Google Scholar 

  22. K.C. Huang, T.R. Wang, J.D. Joannopoulos, Phys. Rev. Lett. 94, 175702 (2005)

    Article  Google Scholar 

  23. B.A. Hands, Cryogenics 28(12), 823–829 (1988)

    Article  CAS  Google Scholar 

  24. R.W. Cahn, Nature 323, 668–669 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support from the National Natural Science Foundation of China (Grant No. 51871118), the fund of Science and Technology Project of Lanzhou City (Grant No. 2019-1-30), and the fund of State Key Laboratory of Special Rare Metal Materials (Grant No. SKL2020K003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 24 2020; accepted March 27, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Zhang, A., Li, S. et al. New Nucleation Mechanism of the Liquid Droplet at the Solid–Solid Interface During Initial Thermal Stabilization Stage of Directional Solidification. Metall Mater Trans A 52, 2691–2697 (2021). https://doi.org/10.1007/s11661-021-06271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06271-z

Navigation